Акт проверки эффективности работы вентиляции: образец для роспотребнадзора

Проверка эффективности вентиляционной системы в Красноярске

Акт о проверке эффективности системы вентиляции

Особенно это касается новостроек и тех заведений, где велись ремонтные работы, были заменены системы вентиляции. Хотя эта бумага и не относится к категории документов строгой отчетности, без нее функционирование школы, детского сада или любого другого заведения, где люди проводят длительное время, невозможно.

Ежегодно перед началом учебного года, а также перед сдачей объекта в эксплуатацию требуется такой документ. При этом химические кабинеты и лаборатории находятся на особом счету. Проверка этих помещений может проводиться и раз в 3 месяца. Это связано с возможностью длительного нахождения в воздухе вредных для здоровья веществ.

Кроме того, составление документа необходимо при эксплуатации промышленных, производственных и складских комплексов. Ни одно производство не обойдется без него.

Правовые документы

Способы, приемлемые при проверке систем, досконально описаны в ГОСТах 12.4.021-75 или 12.1.005-88. Также можно использовать для получения информации межотраслевые МУ по контролю систем вентиляции.

Кто может составить акт о проверке вентиляции

К выполнению этого вида работы пригодны все организации, имеющие СРО при допуске 24.14. (наладка систем вентиляции, кондиционирования воздуха).

При этом одна копия акта хранится в Роспотребнадзоре, одна – в самом учреждении, в котором проводилась проверка.

Алгоритм составления

В правой части – дата составления (это шапка бумаги). Такая форма наиболее эффективна, чем протокол.

Затем перечисляются члены комиссии. Обязательно наличие фамилии и инициалов, должности лица (представитель технического надзора, представитель строительной организации и т.д.).

Для нежилых помещений

Для нежилых в нем достаточно указать:

  • Председателя и членов комиссии.
  • Время и адрес объекта, на котором проводится проверка.
  • Техническую документацию, которая прилагается к системе вентиляции.
  • Метод, которым была осуществлена проверка исправности (пробного пуска) и эффективности (индивидуальный параметр).
  • Установлено, что система вентиляции соответствует ГОСТу 13779-2007 или не соответствует ему.
  • Выводы и предложения (если имеются) собранной комиссии.
  • Подписи.

Для жилых зданий, школ и детских садов документ требует большей детализации.

Школы и детские сады

Также в акте необходимо дополнительно указать:

  • Точный перечень всего вентиляционного оборудования.
  • Желательно коэффициент воздухообмена и степень его соответствия принятым нормам.
  • Номера прилагающихся чертежей.
  • Материалы и приборы, с помощью которых проводилась проверка.
  • В нижней части ставится печать и подпись представителя строительно-монтажной компании, осуществляющей замеры, а также подпись представителя надзорной организации.

Методы определения эффективности

Последний метод сложнее, так как требует измерения концентрации веществ и гораздо более расширенного списка оборудования: фонарика, микроманометра, тахометра, термометра и многого другого. После забора понадобится обработка взятых проб в лаборатории.

Комиссия обязана обращать внимание на определенные параметры и фиксировать:

  • Состояние и степень герметичности гибких элементов вентиляции: кожухов, корпусов, ремней, приводов и пр.
  • Параметры микроклимата: скорость воздухопотока, содержание углекислого газа в рабочее время, кратность вентсистемы и т.д.
  • Результаты аэродинамических испытаний (для этого понадобятся пневмометрические отверстия).

Коэффициент воздухообмена

Значение определяется по формуле:

К = (Ту — Тпр) / (Тоз — Тпр),

  • К – искомое значение;
  • Ту – температура воздуха, который находится за пределами помещений;
  • Тпр – приточного потока;
  • Тоз – непосредственно в зоне обслуживания.

По нормам в среднестатистическом учебном классе коэффициент воздухообмена не должен быть ниже 16 м3/ч, а в столовой – не менее 20. Для жилых домов требования менее жесткие, однако контроль за их соблюдением – дело СЭС.

Последняя организация обязана ознакомиться с актом до ввода жилого помещения в эксплуатацию, а обновить его – через 5 лет. Но при обращении жильцов (например, для передачи дела в суд) такой документ может быть составлен и ранее указанного срока.

Читайте также:
Как гладить шелк (натуральный и искусственный) утюгом и не только: правила глажки шелковых вещей

После описательной части в акте возможна рекомендательная: какие выводы сделала комиссия, есть ли способы оптимизировать существующую систему вентиляции, какие максимально допустимые параметры приемлемы и пр.

Подписи в нижней части документа для всех членов комиссии обязательны.

Вентиляционная лаборатория

узкая специализация = высокая эффективность & низкая цена

Эффективность вентиляции

Все профессии – это заговор специалистов против профанов.
Джордж Бернард Шоу

Желающим углубиться в тему эффективности вентиляции на уровне специалиста, разобраться в формулах, взять несколько интегралов и т.п. нужно смотреть ГОСТ Р ЕН 13779-2007, в нём неплохо затронуты вопросы эффективности в профессиональном варианте. Норматив переведён неважно, но понять можно.

В быту эффективность означает способность справиться с задачей, применительно к вентиляции – обеспечить нужное качество воздушной среды.

В практике, для всех пользователей вентиляции и санитарной инспекции (Роспотребнадзора), можно считать, что эффективность – это соответствие нормам по кратности воздухообмена или иным критериям.

И сразу противоречие. Допустим, для некоего помещения, например, кабинета врача, имеется нормативная кратность (отношение объёма помещения к воздухообмену). Но обеспечит ли она требуемое качество воздушной среды?

Пусть нормативная кратность – 2 (два), для помещения объёмом 30 м 3 условно эффективным будет считаться воздухообмен 60 м 3 /час, а в помещении 120 м 3 час эффективным будет 240 м 3 /час. Существенная разница.

А сколько человек в кабинете врача может находиться согласно нормам? Два? Три? Десять? А что это за врач? На приёме у него дети или тяжело больные заразные?

Конечно, специалист сразу скажет, что площади и прочее тоже нормируется, – но соблюдены ли эти нормы в данном случае? Так что вопрос эффективности, как часто бывает, совсем не так прост, как хотелось бы.

Но не будем и усложнять: в стране есть нормативы почти для всех типов помещений, если они обеспечиваются, то пока нет жалоб, мы имеем право считать вентиляцию эффективной.

Итак, почти всегда эффективность вентиляции: это её соответствие нормам. Вентиляция может быть принудительной, в этом случае логичнее говорить об эффективности работы вентиляции, состоит принудительная вентиляция обычно из нескольких компонентов, образуя систему, так что можно говорить об эффективности системы вентиляции.

Проверка эффективности работы вентиляции
аэродинамическими испытаниями

Итак, в основном варианте проверка эффективности вентиляции (например, для роспотербнадзора) – это проверка соответствия параметров работы вентиляционных систем нормативным.

На основании этой проверки, которая обычно сводится к аэродинамическим испытаниям, мы устанавливаем фактические показатели работы систем и сравниваем их с проектными.

Подразумевается, что проект выполнен на основании нормативов. Если проекта нет, то сравниваем непосредственно с нормативами.

Эффективность вентиляции раньше проверялась в ходе наладки на санитарный эффект, теперь обычно в ходе периодического производственного контроля.

На фото: я измеряю расход на решётке анемометром с воронкой.

Акт проверки эффективности вентиляции

Результаты замеров в лабораторной практике оформляются протоколами. Точное название для этого протокола: протокол аэродинамических испытаний системы вентиляции.

Если лаборатория работает по международным стандартам, то в протоколах даже не рекомендуется делать выводы. Там только результаты замеров. Выводы на их основании делает сертифицированный эксперт, в отдельном документе, заключении.

Фактически приходится оформлять именно акты проверки эффективности работы вентиляции, обычно для роспотребнадзора.

Такие акты кроме названия отличаются от протокола только разделом «Заключение», в котором нужно указать, что фактические расходы отличаются от нормативных на допустимую величину менее 10% или сколько там.

В этом есть свои плюсы, дело в том, что к содержанию протокола есть определённые требования, полное выполнение которых увеличивает размер до двух-трёх листов, а если мы называем протокол актом, то соответственно можно оставить только самое необходимое, и разместиться на одном листе.

Читайте также:
Готовим пышные оладьи на сухих дрожжах быстро и просто

Форма протокола проверки эффективности в нормативах отсутствует, выполняется по общетехническим требованиям, минимально:

  • В шапке название исполнителя;
  • Название и номер протокола, в нашем случае акта проверки эффективности, даты;
  • Идентификация объекта, места, оборудования;
  • Ссылка на методику измерений;
  • Указания о поверке приборов;
  • Собственно результаты изменений;
  • Заключение;
  • Подписи.

В разделе подписей лучше делать, как положено в протоколах, только исполнители и руководитель наладочной организации, может представитель лица, присутствующего при замерах. За результаты замеров отвечают их исполнители и руководитель, присутствующее лицо своей подписью подтверждает только факт присутствия при замерах.

Я заинтересован, чтобы формы актов проверки эффективности у всех наладчиков были однообразные, так что при случае выложу основные варианты, чтобы их можно было скачать. Возможно в начале в группе ВКонтакте.

Технически акт проверки является таблицей кратности воздухообмена, с приложенными протоколами замеров.

Лаборатории санитарной инспекции пользуются другой формой, в которой в одном протоколе и таблица и сами замеры. Образцы имеются в сети.

Проверка эффективности вентиляции индикаторным газом

В редком, но технически более точном варианте, проверка эффективности вентиляции – это непосредственное определение основного показателя воздухообмена методом индикаторного газа. В этом случае кроме параметров вентиляции в замере учитывается неорганизованный воздухообмен.

Для бывалых наладчиков с опытом наладки на санитарный эффект метод затруднений не представляет. Подходящие газоанализаторы с регистрацией имеются и доступны, только плати, а с компьютером даже и вычисления становятся мгновенными.

Для общей ориентации потенциальных заказчиков вкратце опишу процесс:

  • В подготовленное помещение выпускается и перемешивается индикаторный газ.
  • Включается газоанализатор, который фиксирует изменение концентрации газа со временем, которое происходит из-за разбавления, т.е. вентиляции.
  • В зависимости от задачи время испытаний может быть долгим, на воздухопроницание испытывают сутки, просто на эффективность работ систем вентиляции – обычно час. Но в это время наладчик не занят, всё происходит само.
  • Данные замеров передаются на компьютер, после выбора участка графика и функционального анализы мы получаем коэффициент эффективности вентиляции, т.е. кратность с учётом всех тонкостей.

Точность метода высокая, замер не требует хорошего знания аэродинамики, нужно только тщательно соблюсти методику.

Замеры вентиляции на эффективность таким способом вытекают из относительно нового переводного ГОСТа Р ЕН 13779-2007, и в отечественную практику производственного контроля они пока не вписаны. Всех устраивают старые показатели эффективности вентиляции помещений: кратность воздухообмена.

Конечно, наладчики должны быть готовы к применению индикаторного газа в тех случаях, когда это необходимо – если воздухообмен не определяется аэродинамическими испытаниями принудительной вентиляции.

На фото: я измеряю концентрацию СО2 в помещении.

Измерил: 533 ppm.

Иные критерии

Хотя основным критерием является воздухообмен, но подразумевается при этом способность воздухообмена разбавлять вредные выделения. При создании нормативов рассматриваются типичные случаи. Например, высокие нормы для операционных, процедурных кабинетов, комнат для курения, связаны с возможностью значительного выделения потенциально опасных веществ.

Если говорить о вредных выделениях, то: «Концентрации вредных веществ в воздухе внутренней среды помещений не должны превышать среднесуточных или среднесменных предельно-допустимых концентраций (ПДК) загрязняющих веществ, установленных для воздуха населённых мест или воздуха рабочей зоны.» .

В основном это не касается жилья, основным источников вредности в жилье является человек, его выделения известны и заложены в нормах. Но последнее время появились жалобы на запах мебели. Если учесть, что наиболее вероятно это выделения фенола и формальдегида, применяемых в качестве вяжущего вещества, то это серьёзно.

Читайте также:
Динамик для телефона из подручных средств

Рассчитанная только на человека вентиляция не может справляться с большими выделениями вредных веществ.

И это не проблема вентиляции – источники вредных выделений не должны попадать в жильё.

Если мы говорим о эффективности вентиляции в производстве, где определяющим загрязнителем является технологический процесс, то в двух словах про это не расскажешь. Даже выявления основного загрязнителя может стать проблемой, т.к. не всегда известен состав промышленных компонентов.

Когда состав установлен, и мы знаем, что мерить, то может оказаться что надёжной лаборатории химанализа для этого вещества в регионе нет! Это переводит работу в иную ценовую категорию, так что дешевле будет увеличивать воздухообмен пока проблема не исчезнет.

И в этом случае в практике крупных международных производителей закрепился описанный выше процесс: устанавливают очень высокие кратности, 20 и 30 обменов в час, что полностью решает проблему разбавления любых выделений.

Акты проверки вентиляционных систем: образцы для детских садов и школ

Вентиляция в школах и детских садах обеспечивает здоровый микроклимат, необходимый для нормального самочувствия и полноценного обучения детей. Основное внимание уделяется микроклимату в учебных классах, спальнях, спортзалах. Все параметры вентиляции, указанные в актах проверок, регламентируются нормативами СНиП 31-06-2009 и СанПиН.

Санитарно-гигиенические ревизии осуществляются сотрудниками санэпидемслужбы. Один образец акта проверки эффективности работы вентиляции остается в учебном учреждении, другой в архивах службы СЭС.

  1. Проверка систем вентиляции
  2. Проверка вентиляции детского сада
  3. Учет влажности помещения
  4. Проверка вентиляции школы
  5. Помещения с усиленной вентиляцией

Проверка систем вентиляции

Уровень углекислого газа в помещении с людьми с вентиляцией и без

Эффективность работы систем определяется перед сдачей нового объекта в эксплуатацию, а также ежегодно в августе перед началом учебного года.

Школа, не сдавшая в Роспотребнадзор акт проверки эффективности работы вентиляции, не имеет право открывать новый учебный год. Задача надзора предупредить нарушения в работе вентиляционных систем, а также вовремя обнаружить существующие неполадки. Результаты вносятся в акт проверки детского сада или в акт проверки школы.

Акт СанПин обследования вентиляции (кликабельно)

Предупредительный санитарный надзор необходим как при вводе в эксплуатацию нового детсада или школы, так и при замене вентиляционного оборудования, после ремонта. В ходе проверки системы вентиляции составляется акт установленного образца.

Контроль над состоянием вентиляционного оборудования в лабораториях и химкабинетах может проводиться 1 раз в 3 месяца, так как здесь в воздух возможно выделение опасных и вредных веществ.

Текущий контроль проводится методом замеров с помощью специального оборудования.

В некоторых случаях к акту на проверку вентиляционных каналов необходимо прикладывать фотографии, сделанные на местах и указывающие на состояние оборудования. Заполняется установленный образец акта проверки эффективности работы вентиляции.

Бланки актов проверки эффективности работы вентиляции не относятся к категории строгой отчетности.

Проверка вентиляции детского сада

Согласно требованиям нормативных актов детские сады размещаются в отдельных зданиях. Проветривание в спальнях и игровых комнатах обеспечивается естественным способом (угловым или сквозным проветриванием через открытые форточки). Эффективность этого метода в каждом конкретном случае проверяется сотрудниками Роспотребнадзора с обязательным занесением результатов в акт проверки эффективности работы вентиляции.

Учет влажности помещения

Влажность – это один из важнейших показателей микроклимата дошкольного учреждения. Поэтому этот показатель всегда отмечается в актах проверки вентиляции детского сада. Слишком сухой воздух негативно сказывается на состоянии респираторной системы детей. Тогда как избыточная влажность приводит к развитию плесени, вызывающей аллергию и астматические явления. Поэтому при проверке работы вентиляции в детском саду обязательно определяется влажность и результат заносится в акт.

Контроль над состоянием воздухообменных систем детских садов не предусматривает заполнения отдельной формы акта проверки вентиляционных каналов. Все необходимые данные проверки степени чистоты и эффективности их работы вносятся в один общий акт стандартного образца.

Проверка вентиляции школы

В школах используется смешанная система вентиляции. Для обеспечения свежего воздуха в учебных помещениях, учительских, библиотеке и коридорах оборудуются форточки, удаляется отработанный воздух через вентиляционные каналы в санузлах. В ходе контрольных замеров показатели работы естественной вентиляции заносятся в акты.

Читайте также:
Детские качели для дачи: примеры и варианты исполнения, отзывы

Лаборатории, актовые залы, мастерские, спортзалы и столовые нуждаются в принудительном оттоке воздуха. Чистый воздух попадает в помещения через открытые форточки в коридорах и раздевалках. Вытяжка обеспечивается принудительно, вытяжными вентиляторами, по вентканалам. Соотношение притока к вытяжке в среднем должно составлять 2,5:1,5. Интенсивность работы системы и чистоту воздуховодов проверяют, результаты фиксируются в акте проверки вентиляции школы.

Помещения с усиленной вентиляцией

В лабораториях и кабинетах химии обустраиваются вытяжные шкафы и принудительная вытяжка воздуха. Соответствие мощности вытяжного оборудования установленным нормам контролируется и фиксируется актами проверки дымовых и вентиляционных каналов.

Вентиляция школьного пищеблока

Усиленный воздухообмен необходим и в помещении пищеблока, где в процессе приготовления пищи выделяется много тепла и влаги. Обычно это принудительная вентиляция приточно-вытяжного типа.

Приток идет в помещение столовой, из расчета 20 кубометров воздуха в час на посадочное место. Вытягивается отработанный воздух из помещения кухни. Интенсивность воздухообмена в кухне измеряется в ходе ревизии и заносится в акт проверки эффективности вентиляции.

Если у входа в школу оборудованы воздушно-тепловые завесы (что характерно для больших школ), показатели температуры и влажности измеряются в тамбурах и фиксируются в актах проверки вентиляции.

При использовании систем воздушного отопления в школах запрещена рециркуляция воздуха. В качестве воздуховодов запрещено использовать асбестоцементные трубы. Обнаруженные нарушения вносятся по образцу в акт проверки вентиляционных каналов.

Как сделать аксиальный ветрогенератор

Эта статья посвящена созданию аксиального ветрогенератора на неодимовых магнитах со статорами без металла. Ветряки подобной конструкции стали особенно популярны из-за растущей доступности неодимовых магнитов.

Материалы и инструменты использованные для постройки ветряка этой модели:

1) ступица от автомобиля с тормозными дисками.
2) дрель с металлической щеткой.
3) 20 неодимовых магнитов размером 25 на 8 мм.
4) эпоксидная смола
5) мастика
6) труба ПВХ 160 мм диаметром
7) ручная лебедка
8) труба металлическая длинной 6 метров

Рассмотрим основные этапы постройки ветряка.

За основу генератора была взята ступица автомобиля с тормозным диском. Так как основная деталь заводского производства, то это послужит гарантом качества и надежности. Ступица была полностью разобрана, подшипники находящиеся в ней были проверены на целостность и смазаны. Так как ступица была снята со старого автомобиля, то ржавчину пришлось зачистить с помощью щетки, которую автор насадил на дрель.
Ниже предоставлена фотография ступицы.

Затем автор приступил к установке магнитов на диски ротора. Было использовано 20 магнитов. Причем важно заметить, что для однофазного генератора количество задействованных магнитов равно количеству полюсов, для двухфазного соотношение будет три к двум или четыре полюса к трем катушкам. Магниты следует крепить на диски с чередованием полюсов. Для соблюдения точности необходимо сделать шаблон размещения на бумаге, либо начертить линии секторов прямо на самом диске.

Рассмотрим основные отличия конструкции однофазного и трехфазного генераторов.
Однофазный генератор будет давать вибрацию при нагрузках, что будет отражаться на мощности самого генератора. Трехфазная конструкция лишена подобного недостатка благодаря чему, мощность постоянна в любой момент времени. Это происходит потому, что фазы компенсируют потерю тока друг в друге. По скромным расчетам автора трехфазная конструкция превосходит однофазную на целых 50 процентов. К тому же из-за отсутствия вибраций мачта не будет дополнительно раскачиваться,следовательно не будет дополнительного шума при работе ротора.

Читайте также:
Идеи хранения крышек от кастрюль: фото

При расчете зарядки 12-ого аккумулятора, которая будет начинаться на 100-150 оборотах в минуту, автор сделал по 1000-1200 витков в катушках. При намотке катушек автор использовал максимально допустимую толщину проволоки, чтобы избежать сопротивления.
Для наматывания проволоки на катушки автор соорудил самодельный станок, фотографии которого представлены ниже.

Лучше использовать катушки эллипсоидной формы, что позволит большей плотности магнитных полей их пересекать. Внутреннее отверстие катушки стоит делать по диаметру магнита либо больше него. В случае, если делать их меньше, то лобовые части практически не участвуют в выработке электроэнергии, а служат проводниками.

Толщина самого статора должна равняться толщине магнитов, которые задействованы в установке.

Форму для статора можно сделать из фанеры, хотя автор решил этот вопрос иначе. Был нарисован шаблон на бумаге, а затем сделаны борта при помощи мастики. Так же для прочности была использована стеклоткань. Для того, чтобы эпоксидная смола не прилипла к форме, ее необходимо смазать воском или вазелином, или можно использовать скотч, пленку, которую в последствии можно будет отодрать от готовой формы.

Перед заливкой катушки необходимо точно закрепить, а их концы вывести за пределы формы, чтобы затем соединить провода звездой или треугольником.

После того, как основная часть генератора была собрана, автор измерил протестировал его работу. При ручном вращении генератор вырабатывает напряжение в 40 вольт и силу тока в 10 ампер.

Для поднятия мачты используется ручная лебедка.
Сам винт для генератора был сделан из трубы ПВХ диаметром 160 мм.

После установки и испытаний генератора в стандартных условиях автор сделал следующие наблюдения: мощность генератора доходит до 300 ватт при ветре в 8 метров в секунду. В последующем увеличил мощность генератора за счет металлических сердечников установленных в катушки. Винт стартует уже при двух метрах в секунду.

Дальше автор приступил к совершенствованию конструкции в целях увеличения мощности генератора. Были набраны магнитопроводы из пластин, которые в последствии были установлены в конструкцию. Из-за их установки появился эффект залипания, но не очень сильный. Старт работы винта происходит при скорости ветра около двух метров в секунду.

Таким образом установка металлических сердечников увеличила мощность генератора до 500 ватт при ветре в 8 метров в секунду.
Для защиты от сильных ветров была использована классическая схема увода винта складывающимся хвостом.

В среднем генератор способен вырабатывать до 150 ватт энергии в час, которая идет на зарядку аккумуляторов.

Ветрогенератор на неодимовых магнитах

Пост опубликован: 15 ноября, 2017

Неодимовый магнит – это редкоземельный металл, обладающий стойкостью к размагничиванию и способностью намагничивать некоторые материалы. Используется при изготовлении электронных устройств (жесткие диски компьютеров, металлодетекторы и т.д.), медицине и энергетике.

Неодимовые магниты используются при изготовлении генераторов, работающих в различных видах установках, вырабатывающих электрический ток.

В настоящее время генераторы, изготовленные с использованием неодимовых магнитов, широко используются при изготовлении ветровых установок.

Основные характеристики

Для того, чтобы определиться в целесообразности изготовления генератора на неодимовых магнитах, нужно рассмотреть основные характеристики данного материала, которыми являются:

  • Магнитная индукция В — силовая характеристика магнитного поля, измеряется в Тесла.
  • Остаточная магнитная индукция Br — намагниченность, которой обладает магнитный материал при напряжённости внешнего магнитного поля, равной нулю, измеряется в Тесла.
  • Коэрцитивная магнитная сила Hc — определяет сопротивляемость магнита к размагничиванию, измеряется в Ампер/метр.
  • Магнитная энергия (BH)max -характеризует, насколько сильным является магнит.
  • Температурный коэффициент остаточной магнитной индукции Tc of Br – определяет зависимость магнитной индукции от температуры окружающего воздуха, измеряется в процентах на градус Цельсия.
  • Максимальная рабочая температура Tmax — определяет предел температуры, при которой магнит временно теряет свои магнитные свойства, измеряется в градусах Цельсия.
  • Температура Кюри Tcur — определяет предел температуры, при которой неодимовый магнит полностью размагничивается, измеряется в градусах Цельсия.
Читайте также:
Демонтаж стены в ванной

В состав неодимовых магнитов, кроме неодима входит железо и бор и зависимости от и их процентного соотношения, получаемое изделие, готовый магнит, различается по классам, отличающимся по своим характеристикам, приведенным выше. Всего выпускается 42 класса неодимовых магнитов.

Достоинствами неодимовых магнитов, определяющими их востребованность, являются:

  • Неодимовые магниты обладают наиболее высокими магнитными параметрами Br, Нсв, Hcм , ВН.
  • Подобные магниты имеют более низкую стоимость в сравнении с подобными металлами, имеющими в своем составе кобальт.
  • Обладают способностью работать без потерь магнитных характеристик в температурном диапазоне от – 60 до + 240 градусов Цельсия, с точкой Кюри +310 градусов.
  • Из данного материала возможно изготовить магниты из любой формы и размеров (цилиндры, диски, кольца, шары, стержни, кубы и др.).

Ветрогенератор на неодимовых магнитах мощностью 5,0 кВт

В настоящее время отечественные и зарубежные компании все более широко используют неодимовые магниты при изготовлении тихоходных генераторов электрического тока. Так ООО «Сальмабаш», г. Гатчина Ленинградской области, выпускает подобные генераторы на постоянных магнитах мощностью 3,0-5,0 кВт. Внешний вид данного устройства приведен ниже:

Корпус и крышки генератора изготавливаются из стали, в дальнейшим с покрытием лакокрасочными материалами. На корпусе предусмотрены специальные крепления, позволяющие закрепить электрический аппарат на несущей мачте. Внутренняя поверхность обработана защитным покрытием, предотвращающим коррозию металла.

Статор генератора набран из электротехнических пластин стали.

Обмотка статора — выполнена эмаль-проводом, позволяющим устройству работать продолжительное время с максимальной нагрузкой.

Ротор генератора имеет 18 полюсов и установлен в подшипниковых опорах. На ободе ротора размещены неодимовые магниты.

Генератор не требует принудительного охлаждения, которое осуществляется естественным путем.

Технические характеристики генератора мощностью 5,0 кВт:

  • Номинальная мощность – 5,0 кВт;
  • Номинальная частота – 140,0 оборотов/минуту;
  • Рабочий диапазон вращения – 50,0 – 200,0 оборотов/минуту;
  • Максимальная частота – 300,0 оборотов/минуту;
  • КПД – не ниже 94,0 %;
  • Охлаждение – воздушное;
  • Масса – 240,0 кг.

Генератор оснащен клеммной коробкой, посредством которой осуществляется его подключение к электрической сети. Класс защиты соответствует ГОСТ14254 и имеет степень IP 65 (пылезащищенное исполнение с защитой от струй воды).

Конструкция данного генератора приведена на рисунке, приведенном ниже:

где: 1-корпус, 2- крышка нижняя, 3- крышка верхняя, 4- ротор, 5- неодимовые магниты, 6- статор, 7- обмотка, 8- полумуфта, 9- уплотнения, 10,11,12- подшипники, 13- клеммная коробка.

Плюсы и минусы

К достоинствам ветрогенераторов, изготовленных с использование неодимовых магнитов можно отнести следующие характеристики:

  • Высокий КПД устройств, достигаемый за счет минимизации потерь на трение;
  • Продолжительные сроки эксплуатации;
  • Отсутствие шума и вибрации при работе;
  • Снижение затрат на установку и монтаж оборудования;
  • Автономность работы, позволяющая осуществлять эксплуатацию без постоянного обслуживания установки;
  • Возможность самостоятельного изготовления.

К недостаткам подобных устройств можно отнести:

  • Относительно высокая стоимость;
  • Хрупкость. При сильном внешнем воздействии (ударе), неодимовый магнит способен лишиться своих свойств;
  • Низкая коррозийная стойкость, требующая специального покрытия неодимовых магнитов;
  • Зависимость от температурного режима работы – при воздействии высоких температур, неодимовые магниты теряют свои свойства.

Как сделать своим руками

Ветровой генератор на основе неодимовых магнитов отличается от прочих конструкций генераторов тем, что легко может быть изготовлен самостоятельно в домашних условиях.

Читайте также:
Как и чем оттереть скотч от различных поверхностей

Как правило за основу берут автомобильную ступицу или шкивы от ременной передачи, которые предварительно очищаются, если это бывшие в употреблении запасные части и подготавливаются к работе.

При наличии возможности изготовить (выточить), специальные диски, лучше остановиться на этом варианте, т.к. в этом случае не придется подгонять геометрические размеры наматываем ых катушек к размерам используемых заготовок.

Неодимовые магниты следует приобрести, для чего можно воспользоваться сетью интернет или услугами специализированных организаций.

Один из вариантов изготовления генератора на неодимовых магнитах, с использованием дисков, специально изготовленных для этих целей, предлагает к рассмотрению Яловенко В.Г. (Украина). Данный генератор изготавливается в следующей последовательности:

  1. Из листовой стали вытачиваются два диска диаметром 170,0 мм с устройством центрального отверстия и шпоночного паза.
  2. Диск делится на 12 сегментов, для на его поверхности выполняется соответствующая разметка.
  3. В размеченные сегменты клеятся магниты, таким образом, чтобы их полярность чередовалась. Для избегания ошибок (по полярности), необходимо перед наклейкой, выполнить их маркировку.
  4. Подобным образом изготавливается и второй диск. В результате получается следующая конструкция:

  1. Поверхность исков заливается эпоксидной смолой.
  2. Из провода (эмаль-провода) марки ПЭТВ или аналога, сечением 0,95 мм 2 , наматывается 12 катушек по 55 витков в каждой.
  3. На листе фанеры или бумаге, изготавливается шаблон, соответствующий диаметру используемых дисков, на котором также производится разбивка на 12 секторов.

Катушки укладываются в размеченные сегменты, где фиксируются (изолента, скотч и т.д.) и расключаются последовательно между собой (конец первой катушки соединяется с началом второй и т.д.). в результате получается следующая конструкция

  1. Из дерева (доска и т.д.) или фанеры, изготавливается матрица, в которой можно залить эпоксидной смолой уложенные по шаблону катушки. Глубина матрицы должна соответствовать высоте катушек.
  2. Катушки укладываются в матрицу и заливаются эпоксидной смолой. В результате получается следующая заготовка:

  1. Из стальной трубы диаметром 63,0 мм изготавливается ступица с узлом крепления вала, изготавливаемого генератора. Вал монтируется на подшипники, устанавливаемые внутри ступицы.
  2. Из такой же трубы изготавливается поворотный механизм, обеспечивающий ориентацию генератора в соответствии с потоками ветра.
  3. На вал одеваются изготовленные запасные части. В результате получается следующая конструкция, плюс поворотный механизм:

  1. Конструкция должна жестко крепить статор (заготовка с обмотками, залитыми эпоксидной смолой), с одной стороны, и не затруднять вращение ротора (диски с недимовыми магнитами).
  2. Из трубы (полиэтилен, пропилеи и т.д.), используемой для прокладки сетей водопровода или канализации, изготавливаются лопасти ветрового генератора. Для этого труба нарезается нужной длины, после чего разрезается и заготовкам придается соответствующая форма.
  3. Изготавливается хвостовок ветровой установки. Для этого может быть использован любой листовой материал (фанера, металл, пластик), после чего хвостовик крепится к собираемой конструкции, со стороны противоположной креплению лопастей. В результате получается следующая конструкция:

  • Собранная установка монтируется в предусмотренном для этого месте.
  • К выводам генератора подключается нагрузка.

Конструкция ветрового генератора на неодимовых магнитах может быть различной, все зависит от имеющихся запасных частей и технический возможностей человека, решившего изготовить подобное устройство самостоятельно.

Спасибо, что дочитали до конца! Не забывайте подписываться на канал, Если статья Вам понравилась!

Делитесь с друзьями, оставляйте ваши комментарии

Добавляйтесь в нашу группу в ВК:

и предлагайте темы для обсуждений, вместе будет интереснее.

Делаем ветрогенератор на неодимовых магнитах

Аксиальный ветрогенератор, который работает на неодимовых магнитах, впервые начали массово изготавливать в странах Запада. И это были вовсе не заводские изделия, а плод труда местных гаражных мастеров, поставивших себе на службу явление левитации. Серьезной популярности именно такие модели ветряка обязаны массовому распространению и дешевизне неодимовых магнитов. Постепенно комплектующие и схемы изготовления стали распространятся по всему миру и в настоящее время магнитный аксиальный ветрогенератор завоевывает признание на просторах Российской Федерации. Ниже описана последовательность создания одной из самых удачных моделей такого ветряка.

Читайте также:
Где и как хранить каркасный бассейн Интекс зимой

Процесс создания ротора

Основой генератора автор разработки решил сделать ступицу автомобиля с дисками тормоза, поскольку она мощная, надежная и идеально сбалансированная. Начав делать ветряк своими руками, в первую очередь следует подготовить основу для ротора — ступицу, — почистить ее от грязи, краски и смазки. После чего приступить к наклейке постоянных магнитов. Для создания данного ветрогенератора, их было использовано по двадцать штук на диске. Размер неодимовых магнитов составил 25х8 миллиметров. Однако, и их количество, и их размер могут варьировать в зависимости от целей и задач человека, своими собственными руками создающего ветрогенератор. Однако всегда будет правильным, для получения одной фазы, равенство количества полюсов числу неодимовых магнитов, а для трех фаз — выдержка соотношений полюсов и катушек — два к трем или три к четырем.

Магниты следует располагать учитывая чередование полюсов, к тому же максимально точно, но прежде, чем приступить к их наклейке, нужно либо создать бумажный шаблон, либо прочертить линии, делящие диск на сектора. Чтобы не перепутать полюса, делаем отметки на магнитах. Главное — выполняем следующее требование — те магниты, которые стоят напротив друг друга, должны быть повернуты разными полюсами, то есть притягиваться.

Магниты приклеиваются к дискам при помощи супер-клея и заливаются. Также нужно сделать бордюрчики по краям дисков и в их центре, либо намотав скотча, либо вылепив из пластилина для недопущения растекания.

Фазы — что лучше — три или одна?

Многие любители электрической техники идут по пути наименьшего сопротивления и, чтобы не заморачиваться, останавливают свой выбор на однофазном статоре для ветряка. Однако у него имеется одна неприятная особенность, нивелирующая простоту сборки, — это вибрация в нагруженном состоянии, по причине непостоянства отдачи тока. Ведь амплитуда такого статора скачкообразна, — достигая максимума, когда неодимовые магниты располагаются над катушками, а после падая до минимума.

А вот, когда генератор сделан по трехфазной системе, то вибрации отсутствуют, и показатель мощности ветряка имеет постоянное значение. Причина такого отличия заключается в том, что ток, падая в одной фазе, в то же время нарастает в другой. И в итоге, ветрогенератор, работающий в трехфазной системе, может быть более эффективным до 50 %, чем точно такой же, но использующий однофазную систему. И главное, — нагруженный трехфазный генератор не дает вибрации, следовательно, мачта не дает повода для жалоб на ветрогенератор в надзирающие органы недоброжелателям из числа соседей, поскольку не создает надоедливого гула.

Способ намотки катушки статора ветряка

Для того, чтобы сделанный своими руками ветрогенератор на неодимовых магнитах работал с максимальной отдачей, статорные катушки следует рассчитывать. Однако большинство мастеров предпочитают делать их на глаз. К примеру, тихоходный генератор, способный заряжать 12 В аккумулятор, начиная со 100 — 150 оборотов за минуту, должен иметь во всех катушках от 1000 до 1200 витков, поровну разделенное между всеми катушками. Увеличение количества полюсов ведет к росту частоты тока в катушках, благодаря чему генератор, даже при малых оборотах, дает большую мощность.

Намотка катушек должна производиться по возможности более толстыми проводами, с целью снижения сопротивления в них. Делать это можно на оправке, либо на самодельном станке.

Читайте также:
Как быстро и вкусно приготовить баранину?

Для того чтобы разобраться, какой потенциал мощности имеет генератор, покрутите его с одной катушкой, поскольку, в зависимости от того, в каком количестве будут установлены неодимовые магниты и какова их толщина, данный показатель может существенно отличаться. Измерение проводятся без нагрузки при необходимом числе оборотов. Например, если генератор при 200 оборотах за минуту обеспечивает напряжение в 30 В, имея сопротивление в 3 Ом, то следует из 30 В вычесть 12 В (напряжение питания аккумулятора) и полученный результат — 18 делим на 3 (сопротивление в омах) получаем 6 (сила тока в амперах), которые и пойдут от ветрогенератора на зарядку АКБ. Однако, как показывает практика, по причине потерь в проводах и диодном мосту, реальный показатель, который будет производить магнитный аксиальный генератор, будет поменьше.

Магниты для создания ветрогенератора лучше брать в форме прямоугольника, поскольку их поле распространяется по длине, в отличие от круглых, поле которых сосредотачивается в центре. Катушки, как правило, мотают круглыми, хотя лучше делать их несколько вытянутыми, что обеспечивает больший объем меди в секторе, а также более прямые витки. Отверстие внутри катушек должно быть равно или превышать ширину магнитов.

Толщина статора должна быть такой же что и магниты. Форма для него обычно фанерная, для прочности под катушки и поверх них кладут стеклоткань, и все это заливается эпоксидной смолой. Для того, что бы не допустить прилипания смолы к форме, последнюю смазывают любым жиром либо применяют скотч. Провода предварительно выводят наружу и скрепляют между собой, концы каждой фазы после этого соединяют треугольником либо звездочкой.

Мачта для ветрогенератора

Мачту на которой будет расположен данный генератор, можно делать высотой от 6 и выше метров, чем выше, тем больше скорость ветра. Под нее следует вырыть яму и залить основание из бетона, а трубу укрепить таким образом, чтобы магнитный аксиальный ветрогенератор, сделанный своими руками, можно было опускать и поднимать. Делать это можно при помощи механической тали.

Винт ветряка

Его делают из поливинилхлоридных труб, чей оптимальный для этого диаметр — 160 мм. К примеру, ветрогенератор, работающий на принципе магнитной левитации, с диаметром в два метра и шестью лопастями, при скорости ветра в 8 метров за секунду, способен обеспечить мощность до 300 Вт.

Как повысить мощность ветряка?

Для подъема мощности ветрогенератора можно использовать магниты. Попросту на магниты, которые уже установлены наклеить еще по одному такому же или более тонкому. Другой способ основан на установке в катушки металлических сердечников, — пластин трансформатора. Это обеспечит усиление магнитопотока в катушке, однако вызывает небольшое залипание, которое, впрочем, совершенно не ощущается шестилопастным винтом. Стартует такой ветрогенератор при ветре в 2 м/с. Благодаря применению сердечников генератор получил увеличение мощности с 300 до 500 Вт/ч при ветре в 8 м/с. Также следует уделять внимание форме лопастей, — малейшие неточности снижают мощность.


Cамодельный генератор для ветряка

Как сделать низкооборотный генератор для ветряка из неодимовых магнитов. Самодельный генератор для ветряка, схемы, фото, видео.

Для изготовления самодельного ветряка в первую очередь требуется генератор, при чём, предпочтительней низкооборотный. В этом и заключается основная проблема, найти такой генератор достаточно сложно.Первое что приходит в голову, взять стандартный автомобильный генератор, но все автомобильные генераторы рассчитаны на высокие обороты, зарядка аккумулятора начинается от 1000 об/мин. Если установить автогенератор на ветряк, то достичь таких оборотов будет сложно, понадобится делать дополнительный шкив с ременной или цепной передачей, всё это усложняет и утяжеляет конструкцию.

Читайте также:
Готовим пышные оладьи на сухих дрожжах быстро и просто

Для ветряка нужен низкооборотный генератор, оптимальный вариант генератор аксиального типа на неодимовых магнитах. Поскольку таких генераторов по доступной цене в продаже практически нет, аксиальный генератор можно изготовить самостоятельно.

Самодельный генератор для ветряка из неодимовых магнитов.

Для изготовления генератора аксиального типа понадобятся:

  • Ступица от авто, тормозные диски.
  • Неодимовые магниты.
  • Медная проволока (0,7мм).
  • Эпоксидная смола.
  • Крепёжные элементы.

Генератор аксиального типа для ветряка представлен на схеме.

В данном случае в роли статора будет диск с катушками, ротором будут два диска с постоянными магнитами. При вращении ротора в катушках статора будет генерироваться ток, который нужен нам для зарядки аккумуляторов.

Самодельный генератор: изготовление статора.

Статор – неподвижная часть генератора состоит из катушек, которые размещаются напротив магнитов ротора. Внутренний размер катушек обычно равен внешнему размеру магнитов, которые используются в роторе.

Для намотки катушек можно изготовить простое приспособление.

Толщина медной проволоки для катушек примерно 0,7 мм, количество витков в катушках нужно подсчитывать индивидуально, общее количество витков во всех катушках должно быть не менее 1200.

Катушки размещаются на статоре, выводы катушек можно подключить двумя способами, в зависимости от того на сколько фаз будет генератор.

Трёхфазный генератор будет более эффективным для ветрогенератора, поэтому рекомендуется соединить катушки по типу звезда.

Чтобы катушки зафиксировать на статоре их заливают эпоксидной смолой. Для этого нужно сделать форму для заливки из куска фанеры, чтобы жидкая смола не растеклась, нужно сделать борта из пластилина или аналогичного материала. На этом этапе нужно предусмотреть проушины для крепления статора.

Важно чтобы получилась идеально ровная плоскость, поэтому перед заливкой матрицу с катушками нужно установить на ровную поверхность. Катушки перед заливкой нужно тщательно проверить мультиметром и выложить на матрицу по кругу с таким расчётом, чтобы потом магниты ротора находились напротив катушек.

В матрицу заливается жидкая эпоксидная смола по уровень края катушек, перед заливкой форму нужно смазать вазелином.

Когда смола полностью застынет, матрицу разбираем и извлекаем готовый статор с катушками.

Статор фиксируется на корпусе генератора с помощью болтов или шпилек с гайками.

Самодельный генератор: изготовление ротора.

В этой конструкции ротор будет двусторонним, статор с катушками будет посредине между вращающимися дисками с магнитами.

На каждом диске ступицы нужно по кругу расположить магниты, в последовательности поочерёдно меняя полюса.

Когда диски ротора будут установлены, магниты должны быть направлены друг к другу разными полюсами.

Магниты нужно приклеить к дискам суперклеем и залить эпоксидной смолой, верхняя часть магнитов должна остаться непокрытой.

Изготовление ротора для самодельного генератора видео.

Чтобы закрепить статор на ветрогенераторе нужно изготовить металлическое основание, статор крепится к нему с помощью болтов или шпилек.

Собираем всю конструкцию, при этом нужно оставить минимальный зазор между статором ротором, чем меньше зазор, тем эффективней генератор будет вырабатывать энергию. На выход из катушек нужно подключить диодный мост.

В итоге у вас получится аксиальный генератор на неодимовых магнитах. Самодельный генератор может работать на низких оборотах и при этом вырабатывать достаточно энергии для зарядки аккумуляторных батарей, что немаловажно при установке ветогенератора в районах, где преобладают слабые ветра.

Генератор для ветряка видео.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Foundation-Stroy.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: