Индукционный метод поиска повреждений кабеля

Индукционный метод поиска повреждений кабеля

Методы поиска повреждений на кабелях подразделяют на абсолютные и относительные. Относительные предполагают определение расстояния до повреждения в процентах к общей длине линии или в метрах от оконечного устройства. (Относительно длины). Абсолютные определяют повреждения прямо на месте.

К относительным методам относятся импульсный, импульсно-дуговой, мостовой (метод петли),

К абсолютным можно отнести индукционный, акустический, индукционно-акустический и в какой-то мере прожиг.

Индукционный метод

Основан на прослушивании электромагнитных наводок вокруг кабеля при прохождении по нему токов звуковых частот. Один из основных абсолютных методов поиска не только повреждений, но и трассировки кабельной линии. Почти без изменений применяется также на телекоммуникационных кабелях (стр. → Индукционный метод. Поиск трассы кабеля кабелеискателем).

Для введения тока звуковой частоты в кабель используется специализированный генератор. Поиск повреждения или трассировка осуществляется приёмной частью комплекта, состоящего из антенны и приёмника, способных улавливать возникающее вокруг кабеля электромагнитное поле.

Методом можно определить место короткого замыкания в кабеле, трассу прокладки и глубину залегания. Приёмам и способам работы с кабелеискателем, а именно он использует индукционный метод посвящены страницы:
• Подключение генератора кабелеискателя,
• Иллюстрации использования кабелеискателей
• Индуктивные методы трассировки кабеля: схемы и описания
• Подключение к кабелю генератора звуковой частоты

Прожиг или преобразование повреждения


Схема прожигающего устройства ЛВИ—3М (Ярославская)

В силовых кабелях есть также возможность использования больших токов и преобразования повреждения, что серьёзно увеличивает возможности обнаружения места пробоя. Например, в случае, когда происходит пробой изоляции только при большом, в несколько сотен или тысяч вольт напряжении или сопротивление повреждения большое, то средствами высоковольтной лаборатории такое повреждение можно дожечь. Для этой цели используют прожигающее устройство.

Основой такого прибора является мощный высоковольтный трансформатор с возможностью переключения коэффициента трансформации и автотрансформатором в первичной обмотке. Прожиг начинают с постепенного поднятия переменно напряжения в кабеле и наблюдают за протекающим через повреждение током. При каком-то значении напряжения в месте повреждения кабеля возникает устойчивый пробой и соответственно зажигается дуга. Постепенно эта дуга и дожигает место повреждения — полностью сплавляет изоляцию кабеля, превращая её в проводящий ток уголь. Либо, что случается реже, повреждённая жила отгорает до обрыва. Не всегда этот процесс протекает одинаково и для того чтобы добиться устойчивого горения дуги оператору приходится менять коэффициент трансформации установки и выходное напряжение.

В итоге после удачного прожига сопротивление повреждения либо падает до десятков Ом, либо жила переходит в обрыв. В обоих из этих случаев расстояние до повреждения легко определяется импульсным методом (рефлектометром) или индукционным методом (кабелеискателем). Тем не менее, с применением прожига спешить не стоит, так как он имеет свои недостатки. Так его опасно применять на низковольтных кабелях с небольшим сечением жилы — ток, протекающий по кабелю, может его перегреть в неповреждённой длине.

Прожиг кабеля увеличивает время поиска повреждения. Сначала ведь кабель надо дожечь, а затем еще и искать место повреждения индукционным методом. Быстрее определить место повреждения помогает акустический метод с использованием генератора высоковольтных импульсов.

Прожиг в абсолютные методы поиска можно отнести условно. Если вдуматься в его суть, то это даже не метод поиска повреждений, а лишь способ улучшить условия использования таких методов как акустический, индукционный и импульсный. Тем не менее, иногда он может быть использован именно как абсолютный. Его иногда используют при сомнениях в определённых муфтах или разделках – подав через ЛВИ приличный ток можно добиться возгорания сомнительного места, тем самым абсолютно точно определить повреждение.

Акустический метод или метод удара

Метод предполагает использование генератора высоковольтных импульсов и иногда его же называют ударом.

Основой генератора для акустического метода является высоковольтный конденсатор с нагруженным на него трансформатором и выпрямителем. Через автотрансформатор на этом конденсаторе задаётся высокое напряжение. Затем через ручной или автоматический переключатель это напряжение подаётся в кабельную линию. Учитывая приличную энергию, накопленную на конденсаторе, импульс такого генератора на короткое время зажигает дуговой разряд в месте пробоя изоляции с образованием громкого выстрела (удара). Если генератор перевести в автоматический режим, то можно добиться непрерывной последовательности таких ударов.

Читайте также:
Инфракрасные обогреватели - плюсы и минусы, цена и отзывы


Схема выходного каскада генератора высоковольтных импульсов ЛВИ—3М (Ярославль)

Далее поиск повреждения зависит от характера повреждения изоляции и трассы кабельной линии. Так, если кабель проложен открыто, то выстрелы могут быть слышны на десятки и сотни метров и поиск дефекта сводится прослушиванию трассы без приборов. В месте повреждения, как правило, видны вспышки высоковольтного разряда.

Если кабель лежит в грунте, то конечно, эти удары слышны не так далеко. Но тоже бывает достаточно пройтись по трассе — удары часто слышны в пределах нескольких метров от повреждения, причём часто толчки ощущаются даже подошвами ног.

Стоит заметить, что акустический метод может быть использован совместно с импульсным (→ Импульсно-дуговой метод) и в этом случае он перестаёт быть абсолютным. Результат измерений рефлектометра будет обозначен в метрах, а это уже относительно.


Приемник ударных волн Digiphone+
(геомикрофон слева, вверху
увеличенный экран прибора)

Геомикрофон и индукционно-акустический метод

Если повреждение не выгорело наружу, то возможна ситуация, когда удары не слышны. В этом случае используется специальный геомикрофон. Прибор этого типа, как правило, имеет размер с пол-литровую банку и закреплён на полуметровой ручке. Шнур от такого геомикрофона соединяется со специальным портативным усилителем и оператор, проходя по трассе кабеля, ищет по громкости щелчка место повреждения. Во время поиска датчик прибора периодически ставят на грунт и не шевелят его, слушая щелчки в наушниках. По максимальной громкости разрядов и определяют место повреждения.

В более новых приборах микрофон дополняется ещё и электромагнитной антенной — при этом акустический метод становится индукционно-акустическим. Геомикрофон такого типа ловит не только звук выстрела, но и электромагнитный импульс, возникающий при разряде. Учитывая, что звук распространяется медленней электромагнитного поля, то у электронной начинки прибора есть возможность сравнить время прихода обоих сигналов и рассчитать расстояние до места пробоя в метрах. Результат отображается на экране такого прибора.

Определение места повреждения кабеля индукционным методом

С помощью индукционного метода поиска локализуются обрывы жил, замыкания жила-жила, жила-оболочка, двух- и трехфазные замыкания устойчивого характера при различных значениях переходного сопротивления в месте дефекта. Основные принципы поиска индукционным методом, изложенные в статье реализуются с применением специализированного оборудования. Указанные в статье конкретные величины параметров получены при использовании поискового оборудования семейства КП-100К, КП-250К и КП-500К производства компании “АНГСТРЕМ” (применение иного оборудования с использованием указанных в статье величин параметров может оказаться безуспешным). Для всех видов повреждений перед началом ОМП (определение места повреждения) определяют и размечают трассу кабеля.

Поиск обрыва жилы

Генератор поисковый подключается к кабельной линии по схеме «оборванная жила-броня» – Рис. 1 (а)

Рис.1 – Непосредственное подключение генератора по схеме «оборванная жила – броня»

Этот вариант поиска использует наличие распределенной емкости кабельной линии. Сигнальный ток генератора протекает через подключенную к нему поврежденную жилу, распределенную емкость кабеля и броню кабельной линии. При удалении от начала кабеля ток в подключенной жиле постепенно убывает из-за ответвления на распределенную по длине емкость. Соответственно интенсивность поля, вокруг кабеля, при удалении от точки подключения к генератору также убывает. Напряженность магнитного поля над кабелем в месте обрыва становится нулевой. Характер изменения магнитного поля вдоль кабельной линии показано на Рис. 1 (б).

Как видно из графика точность определения места обрыва невысока. Чтобы уменьшить погрешность определения места обрыва целесообразно подключать генератор поочередно к разным концам поврежденной жилы, проводя поиск на участке, к которому подключен генератор.

Для увеличения напряженности магнитного поля над кабельной линией, необходимо увеличить ток, протекающий по кабелю. Это позволит более четко отслеживать сигнал. Увеличения тока можно добиться уменьшением емкостного сопротивления, либо увеличением частоты генератора. Уменьшить емкостное сопротивление можно увеличив погонную емкость кабеля параллельным соединением нескольких жил кабеля.

Для повышения точности определения места повреждения можно рекомендовать следующую последовательность действий. Генератор подключают к одному концу кабеля. Следуют вдоль трассы, контролируя уровень сигнала на приемнике. При уменьшении сигнала до определенного уровня, например, до 5 ед. отмечают на трассе эту точку. Затем генератор подключают к другому концу кабеля и повторяют процедуру. Расстояние между двумя отмеченными точками с одинаковым уровнем сигнала делят пополам. Это и будет наиболее вероятная точка обрыва.

Читайте также:
Для чего нужна отдельная канализация в бане: как сделать слив своими руками

Поиск междуфазного повреждения

При стандартной по глубине прокладке кабеля этот вид повреждения как правило не вызывает затруднений в его локализации.Генератор для поиска повреждений кабеля подключается к двум замкнутым в месте повреждения жилам кабельной линии по схеме, показанной на Рис. 2.

Рис.2 – Схема подключения генератора к двум поврежденным жилам кабельной линии в случае их короткого замыкания.

Сигнальный ток генератора протекает непосредственно по поврежденным жилам кабельной линии во встречных направлениях. Как известно в этом случае магнитное поле, создаваемое током обратно пропорционально квадрату расстояния от кабеля. Генератор при поиске включен в режиме непрерывной генерации. Поиск производится на минимальной частоте – 480 Гц. Эта частота оптимальна с точки зрения минимизации потерь и наводок на соседние коммуникации и позволяет локализовать междуфазные повреждения на расстояниях в несколько километров.

Перед началом поиска повреждения необходимо выбрать и задать минимальный ток генератора, при котором приемник уверенно принимает сигнал генератора на максимальной чувствительности. Реализация этого правила требует наличия двух операторов. Один из операторов регулирует уровень сигнального тока, пошагово повышая его и одновременно фиксируя его стабильность. Второй оператор, находящийся над трассой кабеля в зоне повреждения с приемником ПП-500А или ПП-500К, фиксирует момент появления сигнала достаточного для уверенного поиска. На практике достаточно сигнального тока, обеспечивающего при максимальной чувствительности приемника уровень сигнала в 25…50% полной шкалы его индикатора. Хотя решающим в выборе может быть личный опыт оператора. Например, для кабеля ААБ сечением 50 кв.см, проложенного на глубине 70 см при частоте генератора 480 Гц и небольшом расстоянии от места подключения генератора до повреждения достаточно тока 100…200 мА. Работа на частоте 9796 Гц требует существенно большего тока.

Если выбранный сигнальный ток остается стабильным, значит, сопротивление в точке повреждения кабеля не изменяется под воздействием протекающего тока. Это гарантирует успех поиска не зависимо от величины переходного сопротивления в точке повреждения – стабильность сопротивления дефекта здесь ключевой фактор. В случаях, когда замыкание произошло в результате аварии его сопротивление, как правило, близко к нулю и достаточно стабильно. Повреждения обнаруженные в процессе испытания могут иметь очень большие сопротивления. Если это сопротивление не меняет свою величину при протекании тока от поискового генератора и приемник обладает достаточной чувствительностью, то для локализации места повреждения можно применять индукционный метод поиска (без прожига). Однако элементарный расчет показывает, что такая ситуация возможна только для достаточно низких переходных сопротивлений.

Кроме того, минимальный сигнальный ток позволяет минимизировать сигнал, наведенный на близко расположенные коммуникации и помехи на приемник от этих коммуникаций.

Если в месте повреждения есть электрический контакт поврежденной жилы с оболочкой желательно устранить его, например, воздействуя на ненужный контакт высоковольтным импульсом.

При движении оператора с приемником вдоль трассы кабельной линии уровень принимаемого сигнала будет периодически уменьшаться и увеличиваться. Это объясняется наличием повива (скрутки) жил кабельной линии. Из-за повива жил и взаимовлияния магнитных полей от двух противоположно направленных токов в жилах вокруг кабеля возникает результирующее спиральное поле («твист-эффект»). На индикаторе приемника это и будет проявляться периодическим изменением сигнала с шагом повива. На Рис. 3 (а) показаны повив двух короткозамкнутых жил кабельной линии и токи в них. На Рис.3 (б) приведен график уровня сигнала при движении с горизонтально расположенной катушкой приемника вдоль трассы кабельной линии. На Рис.3 (в) показано распределение магнитных полей от двух свитых жил в разрезе А–А и В–В кабельной линии. При вертикальном расположении поисковой катушки слышимость также периодически изменяется из-за скрутки, рис. 3 (г). В точке повреждения может быть, как увеличение, так и уменьшение уровня сигнала. Это зависит от ориентации жил в месте повреждения. После прохождения места повреждения уровень сигнала снижается до нуля, периодически меняющийся сигнал обусловленный шагом скрутки отсутствует. Наличие сигнала скрутки до места повреждения и отсутствие после – главный признак, позволяющий точно локализовать место междуфазного повреждения. Следует помнить, что сигнал с шагом повива будет наблюдаться при глубине прокладки кабеля не превышающей шаг повива более чем на 20…50%.

Читайте также:
Детские стенки со столом и шкафом

Рис.3 – Изменение сигнала кабельной линии из-за повива

На рис. 4 показана кабельная линия с муфтой и участком, имеющим увеличение глубины залегания. Вверху приведена зависимость интенсивности магнитного поля кабельной линии от длины. Над муфтами и другими неоднородностями кабельной линии интенсивность магнитного поля изменяется. Непосредственно над муфтой уровень сигнала увеличивается за счёт большего расстояния между жилами в муфте. Длина интервала с максимальным уровнем сигнала увеличивается относительно шага скрутки кабеля (c>d, рис. 4). За муфтой сигнал опять меняется по уровню с шагом скрутки. По этим признакам определяется место расположения муфты на кабеле. В местах, где кабельная линия плавно уходит на большую глубину наблюдается плавное уменьшение интенсивности магнитного поля. В местах, требующих особой защиты кабельной линии от механических повреждений, кабель прокладывают в металлических трубах. В этих случаях из-за экранирования наблюдается значительное ослабление интенсивности магнитного поля. В месте короткого замыкания между жилами кабельной линии ток от индукционного генератора меняет свое направление, структура магнитного поля вокруг кабеля изменяется, и компенсация от жил проявляется более слабо. Поэтому над местом повреждения интенсивность магнитного поля увеличивается (Рис. 4), а после прохождения места повреждения плавно уменьшается, при этом сигнал от шага скрутки практически не наблюдается.

Рис.4 – Кабельная линия с неоднородностями и распределение магнитного поля по длине

Трудности при локализации междуфазного повреждения возникают, когда кроме основного полезного сигнального тока протекающего по жилам кабеля присутствуют, так называемые, токи растекания. Эти токи возникают, если кроме основного пути для тока (генератор – жила 1 – повреждение – жила 2 – генератор) существуют пути утечки тока на «землю». Например, в месте повреждения есть утечка или замыкание на оболочку и броню. Ток растекания в отличие от сигнального является током одиночного проводника. Поле, создаваемое таким током, убывает обратно пропорционально расстоянию от кабеля в то время как поле сигнального (ток пары проводников) обратно пропорционально квадрату расстояния. Понятно, что в таком случае токи растекания даже значительно меньшие сигнального могут создать поле «забивающее» полезное поле сигнального тока. Радикально решить эту проблему можно ликвидировав замыкание или утечку в месте повреждения и разорвав все связи кабеля с землей. Однако если кабель имеет не одно повреждение и заземленные муфты такое решение проблематично.

Способы определения мест повреждений кабельных линий

При повреждении кабельной линии определяют предварительно зону повреждения, а затем уточняют и выявляют место повреждения, применяя в зависимости от характера повреждения индукционный, акустический, петлевой, емкостный, импульсный методы или метод колебательного разряда (рис. 1 и 2).

Индукционный метод (см. рис. 1,а) применяется при пробое изоляции между двумя или тремя жилами кабеля и малом переходном сопротивлении в месте пробоя. Метод основан на принципе улавливания сигналом на поверхности земли при пропуске по кабелю тока 15—20 А частотой 800—1000 Гц. При прослушивании над кабелем слышно звучание (наиболее сильное — над местом повреждения и резко снижающееся за местом повреждения).

Для поиска применяют прибор типа КИ-2М и др., ламповый генератор 1000 Гц с выходной мощностью 20 ВА (типа ВГ-2) для кабелей длиной до 0,5 км, машинный генератор (типа ГИС-2) 1000 Гц, мощностью 3 кВА (для кабелей длиной до 10 км). Индукционным методом определяют также трассу кабельной линии глубину заложения кабеля и место расположения муфт.

Рис. 1. Методы (схемы) определения места повреждения кабельной линии: а — индукционный, б — акустический, в — петлевой, г — емкостный

Рис. 2. Изображение на экране прибора ИКЛ места повреждения в кабельной линии: а — при коротком замыкании жил кабеля, б — при обрыве жил кабеля.

Акустический метод (см. рис. 1,б) используют для определения непосредственно на трассе места всех видов повреждений кабельной линии при условии создания в этом месте звукового удара, воспринимаемого на поверхности земли при помощи акустического аппарата. Для создания электрического разряда в месте повреждения кабеля должно быть сквозное отверстие, образуемое при прожигании кабеля газотронной установкой, а также достаточное переходное сопротивление для образования искрового разряда. Искровые разряды создаются генератором импульсов, а воспринимаются приемником звуковых колебаний типа АИП-3, АИП-Зм и др.

Читайте также:
Изделия из холодного фарфора: фото, материал, история, советы

Петлевой метод (см. рис. 1,в) применяется в случаях, когда жила с поврежденной изоляцией не имеет обрыва, одна из неповрежденных жил имеет хорошую изоляцию, а величина переходного сопротивления в месте повреждения не превышает 5 кОм. При необходимости снижения величины переходного сопротивления изоляцию дожигают кенотроном или газотронной установкой. Питание схемы — от аккумулятора, а при больших переходных сопротивлениях — от сухой батареи БАС-60 или БАС-80. Для определения места повреждения на одном конце кабеля соединяют неповрежденную жилу с поврежденной, а на другом конце к этим жилам присоединяют измерительный мост с гальванометром, питаемых аккумулятором или батареей. Уравновешивая мост, определяют место повреждения по формуле

где L х — расстояние от места измерения до места повреждения, м, L — длина кабельной линии (если линия состоит из кабелей разного сечения, длину приводят к одному сечению, эквивалентному сечению наибольшего отрезка кабеля), м, R1 , R2 — сопротивления плеч моста, Ом.

Отклонение стрелки прибора в обратном направлении при перемене концов проводов, присоединяющих прибор к жилам, свидетельствует о том, что повреждение находится в самом начале кабеля со стороны места измерения.

Емкостным методом (см. рис. 1,г) определяют расстояния до места повреждения при обрыве жил кабеля в соединительных муфтах. При обрыве одной жилы измеряют ее емкость C1 сначала с одного конца, а затем емкость C2 этой же жилы с другого конца, после чего делят длину кабеля пропорционально полученным емкостям и определяют расстояние до места повреждения l х, пользуясь формулой

При глухом заземлении поврежденной жилы с одного конца измеряют емкость одного участка и целой жилы , а затем определяют расстояние до места повреждения по формуле

Если емкость С1 оборванной жилы можно замерить только с одного конца, а остальные жилы имеют глухое заземление, то расстояние до места повреждения можно определить по формуле

где С o — удельная емкость жилы для данного кабеля, принимаемая по таблицам характеристик кабелей.

Для измерения емкостным методом применяют генераторы частотой 1000 Гц и мосты: постоянного тока (только при чистом обрыве жил) и переменного тока (при чистых обрывах жил и при переходных сопротивлениях 5 кОм и выше).

Импульсным методом (см. рис. 2) определяют место и характер повреждения. Метод основан на измерении прибором ИКЛ интервала времени t х, мкс, между моментом подачи импульса и приходом его отражения, определяемого из равенства

где n — количество масштабных отметок на экране прибора ИКЛ,

c — цена деления масштабной отметки, равная 2 мкс.

Расстояние l х от начала линии до места повреждения находят, приняв скорость распространения v импульса по кабелю равной 160 м/мкс, по формуле

Метод колебательного разряда применяется для выявления «заплывающих» пробоев изоляции, возникающих в кабельных муфтах вследствие образования в них при испытаниях полостей, играющих роль искровых промежутков. Для определения места пробоя на поврежденную жилу подают напряжение от кенотронной установки, а по показаниям прибора (ЭМКС-58 и др.) определяют расстояние до места пробоя.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Онлайн помощник домашнего мастера

Как найти место повреждения кабеля: методы определения места, поиск причины поломки и лучшие способы устранения

Соединение источника электричества с потребителями электроэнергии в большинстве случаев осуществляется путем прокладывания кабельных линий в земле. Это предусматривает расположение трассы кабеля по кратчайшему расстоянию, нет необходимости сооружать громоздкие металлоконструкции, доступ посторонних к линии невозможен (за исключением случаев несанкционированного доступа).

Читайте также:
Газовая арматура и трубы

Однако, одним из основных недостатков такого вида соединений является сложность установления места неисправности.

Краткое содержимое статьи:

Причины повреждения

Основные причины заключаются в следующем:

  • ошибки проектирования (занижение сечения, неправильный подбор защитной аппаратуры);
  • дефекты, допущенные на производстве: сквозные отверстия, трещины и заусенцы на проволоке;
  • крутые изгибы и механические поломки, допущенные в процессе прокладки кабеля;
  • порча, допущенная при эксплуатации: старение изоляции, коррозия металлов, разрывы при производстве земляных работ

В зависимости от вида проложенного кабеля, способа его прокладки и уровня напряжения, выбирается метод, с использованием которого будет устанавливаться участок повреждения. Основными, наиболее эффективными способами установления места неисправности являются рассмотренные ниже методы.

Методы поиска места повреждения кабеля

Разработаны и успешно применяются следующие способы для поиска мест повреждения.

Импульсный способ

Импульсный способ исключен к применению при заплывающих пробоях ввиду того, что причиной таких повреждений служит высокая влажность, соответственно сопротивление проводника превышает 150 Ом, а это недопустимо для данного метода.

Проверка осуществляется в соответствии с предусмотренной инструкцией как найти место повреждения, с использованием измерителя ИКЛ-5 или ИКЛ-4 путем ввода через переменный ток импульса к области неисправности и получении ответного сигнала. Прибор производит замер времени между периодом подачи и возвращением импульса.

Акустический метод

Акустический метод предусматривает использование приемника и электрогенератора мощных ударных импульсов. Конденсатор генератора присоединяют к кабелю, и когда разрядник срабатывает, напряжение в линии создаёт электромагнитную волну, происходит сильнейшее пробивание, сопровождающееся щелчком в области неисправности. Оператор улавливает щелчки при помощи акустического прибора.

Зона распространения звука распложена в границах от двух до пятнадцати метров. Точка неисправности кабеля устанавливается присутствием максимально громкого звука.

Метод петли

Неисправности устанавливается путем сравнения сопротивлений нарушенной и целой кабельной жилы при использовании метода петли. Порядок поиска повреждений в этом случае требует формирование из кабеля моста типа Р 334 или Р 333, так же требуется наличие моста сопротивления МВУ-49.

Применяется в том случае, если одна жила кабеля не повреждена, если все жилы неисправны, рекомендуется использование неповреждённой жилы находящегося рядом кабельного канала.

Исправная и поврежденная жилы соединяются на одной стороне кабеля петлей. На противоположной стороне кабеля устанавливают мост, регулирующий электросопротивление. Производятся замеры, и, используя формулы соотношения сопротивления, устанавливается дистанция до точки расположения неисправности.

Минусом такого способа является неточность установления точки нахождения неисправности и огромные временные затраты.

Индукционный метод

Рассмотрим теперь, как определяют участок повреждения кабеля индукционным методом, который является более точным и дает шанс установить отрезок неисправности прямо в КЛ, погрешность этого способа не превышает 50 сантиметров.

Применение индукционного метода допустимо в случае, если в месте неисправности сопротивление переходное в кабельной линии составляет не более от двадцати до пятидесяти ОМ.

Содержание способа состоит в улавливании и фиксации над трассой кабельного канала колебаний электромагнитного поля, образованного за счет пропускании по неисправной жиле электричества с частотой звука от 800 до 1000 Гц. Оператор двигается по ходу трассы кабеля и с использованием антенны, усилителя и наушников определяет характер передачи электромагнитного поля. Звучание заметно увеличивается в точке неисправности и теряет силу на расстоянии 50 сантиметров от точки пробоя.

Метод накладной рамки

Если кабель проложен открытым способом или в открытых шурфах, в случае однофазного замыкания кабельной жилы на оболочку, с целью установления отрезка неисправности, специалисты советуют применение метода накладной рамки.

Рамка представляет собой катушку из 1000 витков проволоки и имеет форму прямоугольника, в этом методе используется в роли антенны, выглядит, как указано на фото с места повреждения кабеля.

При определении места неисправности оператор использует телефон для прослушивания изменений звуков, которые издают жила и оболочка кабеля при подключении к ним генератора звуковой частоты. Прослушивается пара максимума и пара минимума звучания, в случае, если рамка установлена и вращается вокруг оси кабеля перед местом расположения повреждения кабельной линии.

Подобный звук говорит о том, что в кабеле протекает пара токов, по жиле и по оболочке. Монотонное звучание вызвано током протекающем только по оболочке и слышится, в случае если рамка установлена и вращается за местом неисправности кабеля.

Такой способ эффективен, если длина кабеля не превышает одного километра за местом повреждения.

Читайте также:
Виды подставок для цветов: напольные и подвесные модели с подсветкой, варианты из металла и дерева

Во всех случаях отыскания места повреждения кабельной линии необходимо произвести огромный комплекс работ с использованием приборов для поиска повреждения кабеля.

Индукционный метод определения места повреждения линии электропередач Текст научной статьи по специальности « Электротехника, электронная техника, информационные технологии»

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Катеров Филипп Викторович, Ремесник Денис Вячеславович

В статье представлена информация по поиску места повреждения индукционным методом . Приведены особенности, а также методика определения.

Похожие темы научных работ по электротехнике, электронной технике, информационным технологиям , автор научной работы — Катеров Филипп Викторович, Ремесник Денис Вячеславович

Текст научной работы на тему «Индукционный метод определения места повреждения линии электропередач»

7. Абразивная и алмазная обработка материалов. Справочник [под ред. Л. И. Резникова]. М.: Машиностроение, 1977. 390 с.

8. Аврутин Ю. Д. Формирование шероховатости поверхности деталей при шлифовании. Станки и инструмент, 1979. № 7. С. 21-26.

9. Королев А. В., Новоселов Ю. К. Теоретическо-вероятностные основы абразивной обработки. Часть 2. Взаимодействие инструмента и заготовки при абразивной обработке. Издат. Сарат. ун-та, 1989. 160 с.

10. Суслов А. Г. Технологическое обеспечение параметров состояния поверхностного слоя деталей. М.: Машиностроение, 1987. 208 с.

11. Ватанабе. Теория шлифования (часть 2 – износ шлифовального круга). Перевод с японского, статья «Эндзиния – рингу», 1957. № 4. ВИНИТИ. М., 1963.

12. Суслов А. Г. Качество поверхностного слоя деталей машин. М. Машиностроение, 2000. 320 с.

Индукционный метод определения места повреждения линии

1 2 Катеров Ф. В. , Ремесник Д. В.

1Катеров Филипп Викторович /Katerov Filipp Viktorovich – магистр, ассистент;

2Ремесник Денис Вячеславович /Remesnik Denis Vjacheslavovich – магистр, кафедра электроснабжения промышленных предприятий, Омский государственный технический университет, инженер, ЗАО «ПИРС», г. Омск

Аннотация: в статье представлена информация по поиску места повреждения индукционным методом. Приведены особенности, а также методика определения. Ключевые слова: электроснабжение, электрические системы, определение места повреждения, индукционный метод.

Индукционный метод в настоящее время получил достаточно большое распространение ввиду его высокой точности. Погрешность зачастую составляет менее 0,5 метра. Он часто используется для ОМП вида «заплывающий пробой». Этот вид повреждений характерен для аварий в соединительных муфтах и каналах между токоведущей жилой кабеля и свинцовой оболочки изоляции [1]. Характерной особенностью данного вида замыкания является сложность его отыскания, ввиду того, что данный вид пробоев может замыкать при сравнительно малом напряжении, а может и не пробиваться и при достаточно большом. Помимо этого, индукционный метод может применяться для проведения поисковых мероприятий вдоль трассы проложения кабеля для поиска аварий внутри кабеля, а именно при междуфазном пробое жил кабеля, между собой или на землю. Этим же методом можно произвести поиск глубины прокладки кабеля, геометрическое расположение соединительных муфт, кабеля, однофазные замыкания кабеля, выделить нужный кабель в бухте и т. д. [2]. Принцип действия данного метода заключается в том, что специально подключенный генератор создает ток в кабеле звуковой частоты порядка 1000-10000 Гц, номинальным значением тока порядка 15-20 А. Характеристики настроек прибора зависят от глубины прокладки кабеля, а также наличия помех. Затем измененное магнитное поле улавливается специальной рамкой индукционного приемника. Электродвижущая сила, наводимая кабелем в рамке, будет иметь зависимость от величин токораспределения в кабеле, взаимного расположения кабеля и рамки в пространстве. Следует отметить, что при некоторых видах повреждений сигнал может угасать на расстоянии в несколько шагов. Таким образом, сотрудник ремонтной бригады совершает обход вдоль трассы кабельной

линии. В этот момент ему отчетливо слышны максимумы и минимумы звучания в головных телефонах. Это явление вызвано периодичностью скрутки кабеля, который для разных марок силовых кабелей может находиться в диапазоне 0,5-1.5 метра. В месте повреждения сигнал будет слышен наиболее ярко, а сразу после уровень резко упадет. Существуют разные виды подключения системы генератор – линия [3]. В случае поиска маршрута прокладки кабеля и определения глубины его генератор подключается по схеме фаза -земля. В случае междуфазного ОМП генератор подключают к поврежденным жилам.

Читайте также:
18 крутых инструментов для мужчин с AliExpress: фото, описание

1. Айзенфелъд А. И. Методы определения мест короткого замыкания на воздушных линиях электропередачи при помощи фиксирующих приборов. М.: Энергия, 1974. 98 с.

2. Бессонов Л. А. Теоретические основы электротехники. Электрические цепи: Учебник. 10-е изд. М.: Гардарики, 2000. 638 с.

3. Катеров Ф. В., Ремесник Д. В. Особенности энергетических систем // Научный журнал, 2016. № 8 (9). С. 23-25.

4. Катеров Ф. В., Ремесник Д. В. Классификация электроэнергетических систем // International scientific review, 2016. № 13 (23). С. 21-22.

5. Катеров Ф. В., Ремесник Д. В. Виды замыканий в электрических сетях // International scientific review, 2016. № 13 (23). С. 22-23.

6. Катеров Ф. В., Ремесник Д. В. Дистанционное определение места повреждения линии методом стоячих волн // International scientific review, 2016. № 13 (23). С. 24-25.

Обзор существующих методов идентификации замыканий Катеров Ф. В.1, Ремесник Д. В.2

1Катеров Филипп Викторович /Katerov Filipp Viktorovich – магистр, ассистент;

2Ремесник Денис Вячеславович /Remesnik Denis Vjacheslavovich – магистр, кафедра электроснабжения промышленных предприятий, Омский государственный технический университет, инженер, ЗАО «ПИРС», г. Омск

Аннотация: в статье дан обзор существующих методов идентификации замыканий, приведены разные варианты классификации.

Ключевые слова: электроснабжение, определение места повреждения, метод стоячих волн, электроэнергетика.

Быстрый поиск места повреждения линии и его устранение – важная задача, выполняемая ремонтными бригадами. Организация ремонтных работ должна проводиться в наиболее короткие сроки. Но в случае протяженных линий электропередач данная задача многократно усложняется, так как трасса часто может быть проложена в труднодоступных областях, таких как болота, леса и т. д. Раньше, во времена отсутствия первых измерительных устройств поиск повреждений в электроэнергетических системах производился совершением обхода линии, зачастую использовались транспортные средства, вертолеты [1]. Но иногда повреждения бывают трудно определяемы даже в непосредственной близости от места аварии. Например, поврежденная гирлянда системы изоляции внешне не отличается от здоровой: не остается ни трещин, ни следов нагара, ни каких-либо других ярко выраженных симптомов аварии. Таким образом, проблема определения места повреждения (ОМП) линии стала достаточно актуальной задачей [2]. Сейчас, под задачей ОМП обычно подразумевается определение места замыкания в линии (ОМЗ). На данный момент широкое распространение установка приборов ОМП получила на

Отыскание места повреждения кабеля

Методы, с помощью которых отыскивают непосредственно место повреждения кабеля, носят название абсолютные и к ним относятся: индукционный метод; метод накладной рамки; акустический метод; метод измерения потенциалов.

Как правило, применению абсолютных методов предшествует отыскание участка повреждения кабеля с помощью относительных методов.

а) Индукционный метод.

Данный метод применяется при определении места повреждения кабеля с замыканием жил между собой и при переходном сопротивлении в месте замыкания не более 10 Ом, а также для определения трассы и глубины залегания неповрежденного кабеля и места расположения кабельных муфт.

Метод основан на фиксации характера изменения электромагнитного поля над кабелем с помощью приемного устройства при пропускании по кабелю тока звуковой частоты. В качестве приемного устройства выступает антенна, в которой под действием переменного электромагнитного поля наводится э.д.с., усиливаемая усилителем и воспроизводящая звуковые сигналы с помощью телефона (см. рис. 20). В качестве источника тока используют генератор звуковой частоты 800-1200 Гц напряжением 100-200 В и током до 20 А (например, генератор ОП-2).

Определение места замыкания между жилами осуществляется по схеме рис. 20. Выводы генератора присоединяют к поврежденным жилам кабеля и подается ток звуковой частоты. Одновременно по трассе кабеля проходит оператор, прослушивающий через телефон звучание наведенных от кабеля в антенне электромагнитных волн. Звучание периодически изменяется в соответствии с шагом скрутки жил кабеля (1-2,5 м). В месте нахождения муфт звучание усиливается при одновременном уменьшении периодичности. При подходе к месту повреждения звучание сигнала усиливается, а на расстоянии примерно 0,5 м за повреждением прекращается.

Рис. 20. Схема определения повреждения кабеля индукционным методом (а) и характер изменения э.д.с. антенны вдоль кабеля.

Читайте также:
Деревянные туалеты – все разновидности и пример строительства. Возведение пудр-клозета

При определении места повреждения полезно знать распределение магнитного поля при прохождении тока звуковой частоты по жилам кабеля и характер изменения э.д.с. наводимой в антенне (см. рис. 21). Наводимая в антенне э.д.с. существенно за висит от расположения антенны над кабелем. Так при вертикальной ориентации магнитной оси антенны максимальное значение э.д.с., а следовательно, максимальное звучание, будет иметь место непосредственно над кабелем. В этом положении витки антенны будут пересекаться максимальным магнитным потоком. Интенсивность звучания будет уменьшаться при перемещении антенны поперек кабеля (см. рис. 21 кривая 1). При горизонтальной ориентации магнитной оси антенны минимальное звучание будет иметь место непосредственно над кабелем (см. рис. 21 кривая 2), а интенсивность звучания увеличивается при поперечном перемещении антенны относительно кабеля.

Для повышения достоверности определения места повреждения рекомендуется осуществлять поиск включая генератор поочередно с одного и другого конца кабеля. При наличии повреждения звучание будет прекращаться в одном и том же месте.

Наводимая в антенне э.д.с. уменьшается пропорционально квадрату расстояния от оси кабеля. Для того чтобы звучание не пропадало необходимо, как можно точнее, выставлять антенну над осью кабеля. Для повышения уровня звучания увеличивают ток пропускаемый по жилам кабеля.

Рис. 21. Характер изменения э.д.с., наводимой в антенне для вертикального (1) и горизонтального (2) положений оси антенны и распределение магнитного поля пары токов при горизонтальном (а) и вертикальном (б) расположения жил кабеля.

Определение места однофазного замыкания на оболочку кабеля изложенным методом теоретически возможно, но практически осуществить трудно даже при наличии большого практического опыта. Это вызвано тем, что в месте повреждения ток растекается по оболочке кабеля в обе стороны и, следовательно, звучание за местом повреждения не прекращается в отличие от случая рассмотренного выше. Для отыскания таких повреждений применяют метод накладной рамки, который является разновидностью индукционного метода.

Представленный метод используется также для определения трассы кабеля. На рис. 22 представлены схема включения генератора, характер изменения э.д.с. наводимой в антенне и распределение магнитного поля. В данном случае при горизонтальной ориентации магнитной оси антенны наводимая э.д.с. имеет максимальное значение над кабелем (кривая 2), так как витки обмотки антенны пересекаются максимальным магнитным потоком. Обратная картина наблюдается при вертикальной ориентации оси, так как витки обмотки антенны в данном случае не пересекаются магнитным потоком.

Рис. 22. Схема определения трассы индукционным методом (а), характер изменения э.д.с. вдоль оси кабеля (б), характер изменения э.д.с. при перемещении антенны поперек оси кабеля (в) и распределение магнитного поля тока одной жилы (г).

б) Метод накладной рамки.

Данный метод применяется для определения однофазных замыканий жилы на оболочку при открытой прокладке кабеля, а также для кабельных линий проложенных в земле в предварительно отрытых шурфах на участке повреждения кабеля.

Участок повреждения определяется одним из методов, изложенных в п. 13.4.2.

Накладная рамка выполняет роль антенны и состоит из прямоугольной катушки, изогнутой по форме оболочки кабеля и закрытой стальным ярмом для усиления э.д.с. пары токов. Обмотка содержит 1000 витков провода ПЭВ диаметром 0,1 мм К рис. 23).

Рис. 23. Схема определения замыкания методом накладной рамки.

1 – стальное ярмо; 2 – обмотка; 3 – оболочка кабеля.

Генератор звуковой частоты подключают к жиле и оболочке поврежденного кабеля. Если рамка находится до места повреждения со стороны генератора, то при вращении рамки вокруг оси кабеля в телефоне за один оборот рамки будут прослушиваться два максимума и два минимума звучания. Это свидетельствует о том, что в кабеле существует поле пары то ков протекающих по жиле и оболочке. Если же рамка находится за местом повреждения, то при ее вращении вокруг оси кабеля будет прослушиваться только монотонное звучание, обусловленное полем одиночного тока протекающего по оболочке. Таким образом, по изменению характера звучания находят место повреждения.

Данный метод позволяет достаточно эффективно отыскивать место повреждения кабеля при переходном сопротивлении не более единиц Ом и длине кабеля за местом повреждения до 1 км. В других случаях отыскание места повреждения с помощью накладной рамки затруднительно.

Читайте также:
Как должен быть установлен унитаз с горизонтальным выпуском?

в) Акустический метод.

Данный метод предполагает создание в месте повреждения мощных электрических разрядов, которые сопровождаются звуковыми колебаниями. Последние фиксируются на поверхности земли с помощью стетоскопа или пьезоэлемента с усилителем. Место повреждения определяется по наибольшему звучанию, вызванному разрядами.

Акустический метод применяется для определения места повреждения, носящий характер “заплывающего” пробоя, а также при обрыве жил кабеля.

Для создания разрядов в месте повреждения используется электрическая энергия, накапливаемая в конденсаторах или в самом кабеле путем заряда от выпрямительной установки (рис. 24).

Рис. 24. Схемы определения места повреждения акустическим методом.

а – при устойчивом замыкании жилы на оболочку кабеля; б – при “заплывающем” пробое; в – использованием емкости неповрежденных жил; г – при обрыве жилы кабеля.

Энергия, накапливаемая в конденсаторе или кабеле, пропорциональна заряжаемой емкости и квадрату приложенного напряжения и составляет 100 Дж и более. При достижении напряжения пробоя эта энергия расходуется за очень короткое время и в месте повреждения происходит мощный удар, сопровождаемый соответствующим звуковым эффектом.

Индукционный метод

Индукционный метод применяется для непосредственного отыскания мест повреждения на трассе кабельной линии при небольших переходных сопротивлениях (не более 20. 50 Ом) (рис. 3.15).

Пользуясь этим методом, можно определить трассу и глубину залегания кабеля. Сущность метода заключается в пропускании по кабелю тока 15. 20 А звуковой частоты и фиксации характера изменения электромагнитного поля над кабелем с помощью приемного устройства. Наводимая в приемной антенне ЭДС пропорциональна току в кабеле, числу витков и площади, охватываемой антенной. Практически для индукционного метода применяется частота 800. 1200 Гц.

При определении места повреждения и трассы кабеля следует учитывать, что наводимая ЭДС зависит от токораспределения в кабеле и взаимного пространственного положения антенны и кабеля.

Рис. 3.15. Схема определения замыкания между жилами индукционным

методом (а), кривая изменения ЭДС антенны вдоль оси кабеля и технология отыскания повреждения (б):

1 — муфта соединительная; 2 — кабель в металлической трубе; 3 — место повреждения; 4 — генератор; 5 — антенна; 6 — усилитель; 7 — телефон

Для определения места замыкания между жилами и нахождения соединительных муфт на трассе кабельной линии выводы генератора присоединяют к поврежденным жилам кабеля.

Оператор, продвигаясь вдоль трассы кабеля, с помощью приемной рамки (антенны), усилителя и телефонных наушников по характеру электромагнитного поля определяет, где проходит трасса и расположена муфта, а также глубину прокладки кабеля и место повреждения.

При перемещении антенны вдоль трассы кабеля будут обнаруживаться изменяющиеся по уровню звучания сигналы. В мостах расположения соединительных муфт наблюдается резкое усиление сигнала. При прокладке кабеля в металлической трубе или при заглублении трассы кабеля наблюдается сильное ослабление сигнала. Над местом повреждения сигнал, как правило, усиливается, что обусловливается переходом тока с жилы на жилу. За местом повреждения на расстоянии не более половины шага скрутки

жил кабеля сигнал затухает (рис. 3.15, б).

Определение места однофазного короткого замыкания в кабеле на оболочку индукционным методом требует от оператора больших навыков. Погрешность определения места повреждения индукционным методом допускается не более 0,5 м.

Индукционный метод трассового поиска кабельных линий основан на регистрации магнитного поля, которое создается протекающим по кабелю током. Поле вокруг одиночного кабеля можно представить в виде концентрических линий (рис. 3.16).

Рис. 3.16. Электрическое поле одиночного кабеля

Датчиком магнитного поля служит магнитная антенна (катушка индуктивности с ферритовым сердечником). Если ось магнитной антенны расположить параллельно поверхности земли непосредственно над кабелем, вдоль линий поля, то в катушке наведется электрический сигнал максимальной амплитуды (рис. 3.16, а). При смещении катушки в сторону амплитуда снимаемого с катушки сигнала будет плавно уменьшаться. По максимуму сигнала при указанном положении катушки на практике обнаруживают ориентировочное местонахождение трассы кабельной линии. Однако из-за размытости максимума сигнала местонахождение кабеля оп редел я ется н еточ но.

Если ось поисковой катушки расположить перпендикулярно поверхности земли непосредственно над кабелем (перпендикулярно линиям поля, когда ось катушки проходит через ось кабеля), то электрический сигнал с катушки будет иметь минимальную амплитуду (рис. 3.16, в). При смещении антенны в сторону от оси

Читайте также:
Делаем напольный светильник своими руками

кабеля амплитуда сигнала сначала резко увеличивается, а затем плавно уменьшается, что позволяет получить резко выраженный минимум сигнала и точно определить местонахождение кабеля.

Для точного определения мест повреждения на трассе используют комплекты приборов, состоящие из генератора звуковых частот и индукционного приемника (например, индукционные комплекты фирмы STELL: SG-600 и SG-80).

При непосредственной связи выходной ток генератора протекает непосредственно по кабелю, поэтому создаваемое им магнитное поле имеет наибольшую напряженность.

При непосредственном подключении генератора по схеме неповрежденная жила — земля (рис. 3.17) один конец неповрежденной жилы кабеля присоединяют к одной из выходных клемм генератора. Вторую клемму генератора соединяют с заземлителем, которым может служить либо металлический стержень длиной 0,5 м с присоединенным к нему проводом, вбитый в землю на расстоянии 6. 8 м от генератора, либо водопроводная сеть, либо металлическая опора линии электропередачи. Другой конец неповрежденной жилы также заземляют.

Рис. 3.17. Непосредственное подключение генератора по схеме неповрежденная жила — земля

Выходной ток генератора проходит но неповрежденной жиле кабеля и замыкается через землю. Вокруг кабеля возникает поле, которое можно регистрировать на протяжении всей линии и тем самым определять ее местонахождение.

При непосредственном подключении генератора по схеме неповрежденная жила — броня (рис. 3.18) неповрежденную жилу подключают к одной из выходных клемм генератора, а другую выходную клемму генератора соединяют с броней (экраном) кабельной линии. На другом конце кабельной линии неповрежденную жилу соединяют с броней (экраном) кабельной линии.

Рис. 3.18. Непосредственное подключение генератора по схеме неповрежденная жила — броня

Выходной ток генератора протекает по неповрежденной жиле и возвращается по броне (экрану) кабеля. Токи в жиле и броне протекают в противоположных направлениях, поэтому интенсивность результирующего магнитного поля вокруг кабеля уменьшается. Если выход генератора подключить к двум жилам кабеля и соединить эти жилы на противоположном конце между собой, то интенсивность результирующего поля вокруг кабеля будет периодически изменяться.

Рассмотренные методы требуют соединений на противоположном конце кабельной линии. В случае полного обрыва кабеля или короткого замыкания (между жилами или между жилами и броней) в кабеле все соединения на противоположном конце кабеля не имеют смысла, так как местонахождение повреждения неизвестно. Рассмотрим примеры подключения генератора при наличии в кабельной линии повреждения.

Непосредственное подключение генератора по схеме оборванная жила — броня показано на рис. 3.19. Данный метод использует наличие распределенной емкости кабельной линии. Выходной ток генератора протекает через подключенную к его выходу повреж-

денную жилу, распределенную емкость кабеля и броню кабельной линии. При удалении от начала кабеля ток в подключенной жиле постепенно убывает из-за ответвления на распределенную по длине емкость. Поэтому интенсивность поля, окружающего кабель, при удалении от начала кабеля также убывает. Интенсивность магнитного поля над кабелем в месте обрыва становится нулевой. Уменьшение интенсивности магнитного поля вдоль кабельной линии показано на рис. 3.20.

Рис. 3.19. Непосредственное подключение генератора по схеме оборванная жила — броня

Рис. 3.20. Интенсивность магнитного поля над кабелем при непосредственном подключении по схеме оборванная жила — броня

Для увеличения интенсивности магнитного поля над кабельной линией необходимо увеличить силу тока, протекающего по кабелю. В рассматриваемом случае выходной ток генератора протекает через распределенное емкостное сопротивление между жилой и броней, погонная величина которого выражается в виде

где X, — емкостное сопротивление /-го участка кабеля; мнимая единица; со = 2р/ — круговая частота (/— выходная частота генератора); С, — емкость /-го участка кабеля.

Для увеличения тока необходимо уменьшить емкостное сопротивление, для чего можно выбрать более высокую выходную частоту генератора либо увеличить погонную емкость кабеля путем параллельного соединения нескольких жил кабеля.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Foundation-Stroy.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: