Из чего делается пластмасса?

Из чего делают пластмассы. Полимерное сырье.

Слово полимер широко вошло в обиход, однако, не все точно знают, что оно означает. Каждого из нас окружают предметы, сделанные из полимеров. Что это такое и чем они полезны для человека?

Сложная химия полимеров доступными словами.

Высокомолекулярные соединения, состоящие из повторяющихся мономерных звеньев, которые соединяются химическими связями или слабыми межмолекулярными силами и характеризующиеся определенным набором свойств, называют полимерами. Они бывают разного происхождения:

  • Органические;
  • Неорганические;
  • Элементоорганические.

Основные свойства полимеров – эластичность и почти полное отсутствие хрупкости их кристаллических соединений нашли широкое применение в производстве пластиковых изделий. Под влиянием направленных механических воздействий молекулы полимеров имеют способность к ориентированию.

Разделяют полимеры и по реакции на температурные режимы – одни из них могут плавиться в процессе нагрева и возвращаться в исходное состояние при охлаждении. Эти полимеры получили название термопластичных, а ряд полимеров, которые при нагреве разрушаются, минуя стадию плавления, относят к термореактивным.

По происхождению различают полимеры природные и синтетические.

В промышленности полимерное сырье используется практически во всех областях. За счет способности некоторых полимеров после переработки принимать свои исходные свойства, существуют производства, выпускающие вторичное полимерное сырье. Используется вторичное полимерное сырье на те же цели, что и первичное, однако его применение имеет ряд ограничений для использования в пищевой и медицинской промышленности.

Первичное полимерное сырье

Рассмотрим основные характеристики некоторых видов первичного полимерного сырья.

Полипропилен – синтетический. Вещество белого цвета, выпускается в виде твердых гранул. Имеет много модификаций, среди которых гомополимер, вспенивающийся полипропилен, каучуковый и металлоценовый полипропилен. Ссылка на каталог: Полипропилен

Полистирол – термопластический синтетический полимер. Твердый, стеклообразный. Хороший диэлектрик, отличается устойчивостью к радиоактивным воздействиям, инертен к кислотам и щелочным растворам (за исключением ледяной уксусной и азотной кислоты). Гранулы полистирола прозрачны и имеют цилиндрическую форму. Используются для производства различной продукции методом экструзионного выдавливания. Ссылка на каталог: Полистирол

Полиэтилен низкого давления – кристаллические малопрозрачные гранулы высокой плотности. Всем известны «шумные» пакеты из ПНД, способные выдержать высокие нагрузки. Путем экструзии из него выдувают очень тонкие пленки. Ссылка на каталог: ПНД

Полиэтилен высокого давления – гранулы белого цвета с красивой гладкой глянцевой поверхностью. Имеет второе название – полиэтилен низкой плотности. Рекомендован для использования в пищевой промышленности и для изготовления изделий медицинского назначения. Ссылка на каталог: ПВД

Поливинилхлорид (ПВХ) – сыпучий порошок с размером частиц до 200 мкм. Легко перерабатывается в твердые и мягкие пластики. Используется для производства труб, пленок, линолеума и других изделий технического назначения. Ссылка на каталог: ПВХ ( Поливинилхлорид )

Линейный полиэтилен высокого давления – используют для выпуска тонких эластичных упаковочных пленок и пленок для ламинирования. По свойствам занимает среднее положение между полиэтиленом низкой и полиэтиленом высокой плотности. Работы по усовершенствованию его свойств не прекращаются. Ссылка на каталог: Линейный полиэтилен низкой плотности ЛПЭНП (LLDPE)

Вторичное полимерное сырье

На многих предприятиях с целью экономии бракованная продукция из полимерных пластиков поступает на вторичную переработку, обеспечивая безотходное производство. Наряду с этим существует целое направление бизнеса по переработке отходов во вторичные гранулы полимера для продажи. Процесс многоступенчатый, весь цикл от сбора и закупки бытовых пластиковых отходов, сортировке, промывке, дробления и переработки в гранулы довольно трудоемкий. Однако готовая продукция по своим свойствам практически не отличается от первичного сырья и успешно используется во многих производствах. Выпуск вторичного полимерного сырья – важная и нужная отрасль народного хозяйства, позволяющая сэкономить огромные средства на отсутствии необходимости утилизации отработанных пластиков.

Что выбрать?

Вопрос какое сырье выбрать стоит перед каждым производителем. И если у вторичного сырья есть очевидный плюс – низкая цена. То не менее очевидны и его минусы:

  • Нестабильность свойств
  • Наличие посторонних примесей
  • Нет уверенности в марке полимера

Автоматически вытекают плюсы первичного полимерного сырья:

  • Стабильные свойства
  • Точно известна марка
  • Абсолютная чистота
  • Стабильные поставки

Пластмассы. Состав, свойства, применение пластмасс

Пластмассы (пластики) представляют собой органические материалы на основе полимеров, способные при нагреве размягчаться и под давлением принимать определённую устойчивую форму.

Полимеры – это соединения, которые получаются путем многократного повторения (рис. 1), то есть химического связывания одинаковых звеньев – в самом простом случае, одинаковых, как в случае полиэтилена это звенья CH2, связанные между собой в единую цепочку. Конечно, существуют более сложные молекулы, вплоть до молекул ДНК, структура которых не повторяется, очень сложным образом организована.

Рис. 1. Формы макромолекул полимеров

1. Компоненты, входящие в состав пластмасс

В большинстве своем пластмассы состоят из смолы, а также наполнителя, пластификатора, стабилизатора, красителя и других добавок, улучшающих технологические и эксплуатационные свойства пластмассы. Свойства полимеров могут быть в значительной степени улучшены и изменены, в зависимости от требований, предъявляемых различными отраслями техники, с помощью различных составляющих пластмассы.

Наполнители служат для улучшения физико-механических, диэлектрических, фрикционных или антифрикционных свойств, повышения теплостойкости, уменьшения усадки, а также для снижения стоимости пластмасс. По массе содержание наполнителей в пластмассах составляет от 40 до 70 %. Наполнителями могут быть ткани, а также порошкообразные и волокнистые вещества.

Пластификаторы увеличивают пластичность и текучесть пластмасс, улучшают морозостойкость. В качестве пластификаторов применяют дибутилфталат, трикрезилфосфат и др. Их содержание колеблется в пределах 10 – 20 %.

Стабилизаторы вещества, предотвращающие разложение полимерных материалов во время их переработки и эксплуатации под воздействием света, влажности, повышенных температур и других факторов. Для стабилизации используют ароматические амины, фенолы, сернистые соединения, газовую сажу.

Красители добавляют для окрашивания пластических масс. Применяют как минеральные красители (мумия, охра, умбра, литопон, крон и т. д.), так и органические (нигрозин, родамин).

Смазочные вещества стеарин, олеиновая кислота, трансформаторное масло – снижают вязкость композиции и предотвращают прилипание материала к стенкам пресс-формы.

Читайте также:
Гиперпластификаторы для бетона

2. Классификация пластмасс

В зависимости от поведения связующего вещества при нагреве пластмассы разделяют на термореактивные и термопластичные.

Термореактивные пластмассы при нагреве до определенной температуры размягчаются и частично плавятся, а затем в результате химической реакции переходят в твердое, неплавкое и нерастворимое состояние. Термореактивные пластмассы необратимы: отходы в виде грата и бракованные детали обычно используют после измельчения только в качестве наполнителя при производстве пресспорошков.

Термопластичные пластмассы при нагреве размягчаются или плавятся, а при охлаждении твердеют. Термопластичные пластмассы обратимы, но после повторной переработки пластмасс в детали физико-механические свойства их несколько ухудшаются.

К группе термореактивных пластмасс относятся пресспорошки, волокниты и слоистые пластики. Они выгодно отличаются от термопластичных пластмасс отсутствием хладотекучести под нагрузкой, более высокой теплостойкостью, малым изменением свойств в процессе эксплуатации. Термореактивные пластмассы перерабатывают в детали (изделия) преимущественно методом прессования или литьё под давлением (рис. 2).

Рис. 2. Схема и установка для получения деталей из термореактивных пластмасс

В таблице 1 приведены свойства, области применения и интервал рабочих температур некоторых термореактивных пластмасс. На рис. 3 показаны некоторые изделия из термореактивных пластмасс.

Рис. 3. Изделия, где применены термореактивные пластмассы

Технология изготовления термопластов довольно проста: гранулы засыпаются в камеру термопластавтомата, где, при необходимой температуре, переходят в текучее состояние, затем расплавленная масса попадает в специальную форму, где происходит прессование и дальнейшее охлаждение (рис. 4). Как правило, большинство термопластов может быть использовано вторично.

Рис. 4. Пресс-форма для литья пластмасс

В таблице 2 приведены свойства, области применения и интервал рабочих температур некоторых термопластичных пластмасс. На рис. 5 показаны некоторые изделия из термопластичных пластмасс.

Рис. 5. Изделия из термопластичных пластмасс

Выбор пластмассы для изготовления конкретного изделия определяется его эксплуатационными условиями. Критерии выбора разнообразны и зависят от назначения изделия. Основными критериальными характеристиками полимерных материалов являются механические (прочность, жесткость, твердость), температурные (изменения механических и деформационных характеристик при нагревании или охлаждении) и электрические. Последние отражают широкое применение пластмасс в радиоэлектронной и электротехнической отраслях. Кроме того, существенное значение приобрели триботехнические характеристики и ряд специальных свойств (огнестойкость, звукопоглощение, оптические особенности, химическая стойкость). Немаловажны также экономические условия (стоимость полимерного материала, тираж изделия, условия производства).

3. Механические свойства пластмасс

Механические свойства определяют поведение физического тела под действием приложенного к нему усилия. Численно это поведение оценивается прочностью и деформативностью. Прочность характеризует сопротивляемость разрушению, а деформативность — изменение размеров полимерного тела, вызванное приложенной к нему нагрузкой. Поскольку и прочность, и деформация являются функцией одной независимой переменной — внешнего усилия, то механические свойства еще называют деформационнопрочностными (рис. 6).

Рис. 6. Механические испытания пластмасс на деформацию прочность (слева), ударную вязкость (по центру), твёрдость (справа)

Модуль упругости является интегральной характеристикой, дающей представление прежде всего о жесткости конструкционного материала. Ударная вязкость характеризует способность материалов сопротивляться нагрузкам, приложенным с большой скоростью. В практике оценки свойств пластмасс наибольшее применение нашло испытание поперечным ударом, реализуемым на маятниковых копрах.

Твердость определяет механические свойства поверхности и является одной из дополнительных характеристик полимерных материалов. По твердости оценивают возможные пути эффективного применения пластиков. Пластмассы мягкие, эластичные, имеющие низкую твердость, используются в качестве герметизирующих, уплотнительных и прокладочных материалов. Твердые и прочные могут применяться в производстве деталей конструкционного назначения: зубчатых колес и венцов, тяжело нагруженных подшипников, деталей резьбовых соединений и пр. (рис. 7).

Рис. 7. Детали конструкционного применения из пластмасс

В таблице 3 указаны механические свойства термопластов общего назначения.

Несколько примеров по обозначению (см. табл. ниже).

ПЭВД Полиэтилен высокого давления ГОСТ 16337-77
ПЭНД Полиэтилен низкого давления ГОСТ 16338-85
ПС Полистирольная плёнка ГОСТ 12998-85
ПВХ Пластификаторы ГОСТ 5960-72
АБС Акрилбутодиентстирол ГОСТ 8991-78
ПММА Полиметилметаакрилат ГОСТ 2199-78

4. Сварка пластмасс

Сварке подвергаются только так называемые термопластичные пластмассы (термопласты), которые при нагревании становятся пластичными, а после охлаждения принимают первоначальные вид и свойства. Кроме них, существуют термореактивные пластмассы, которые изменяют свои свойства при нагреве. Нагревать пластмассы при сварке следует не выше температуры их разложения, т. е. в пределах 140—240 °С.

Пластмассы можно сваривать различными способами:

  • нагретым газом;
  • контактной теплотой от нагревательных элементов;
  • трением;
  • ультразвуком (рис. 8).

Основные условия для получения качественного соединения пластмасс при сварке следующие:

  1. Диаметр присадочного прутка не должен превышать 4 мм для достаточно быстрого его нагрева и обеспечения необходимой производительности сварки.
  2. Сварку следует вести по возможности быстро во избежание термического разложения материала.
  3. Необходимо точно выдерживать температуру сварки во избежание недостаточного нагрева или перегрева свариваемого материала.

На рис. 8 показано оборудование и методы сварки пластмасс.

Рис. 8. Сварочный экструдер для сварки пластмасс, полимеров

5. Другие свойства пластмасс

Химическая стойкость. Химическая стойкость пластмасс, как правило, выше, чем у металлов. Химическая стойкость пластмасс в основном определяется свойствами связующего (смолы) и наполнителя. Наиболее химически стойкими в отношении всех агрессивных сред являются фторсодержащие полимеры —фторопласты 4 и 3. К числу кислотостойких пластмасс в отношении концентрированной соляной кислоты могут быть отнесены винипласт и фенопласты с асбестовым наполнителем. Стойкими к действию щелочей являются винипласт и хлорвиниловый пластик.

Электроизоляционные свойства. Почти все пластмассы — хорошие диэлектрики. Этим объясняется их широкое применение в электро- и радиотехнике. Большинство пластмасс плохо переносит т. в. ч. и поэтому они применяются в качестве электроизоляционных материалов для деталей, которые предназначаются для работы при частоте тока 50 Гц. Однако такие ненаполненные высокополимеры, как фторопласт и полистирол, практически не меняют своих диэлектрических качеств в зависимости от частоты тока и могут работать при высоких и сверхвысоких частотах.

Повышение температуры, как правило, ухудшает электроизоляционные характеристики пластмасс. Исключение составляет полистирол, сохраняющий электроизоляционные свойства в интервале температур от —60 до +60° С, и фторопласт 4 — в интервале температур от —60 до +200°. С.

Читайте также:
Водопроводные трубы ПВХ

Фрикционные свойства. В зависимости от условий работы пластмассовые детали могут обладать различными по величине фрикционными характеристиками. Так, например, текстолит при малых нагрузках имеет малый коэффициент трения, что и позволяет широко использовать его вместо бронзы, антифрикционных чугунов и т. д. Коэффициент трения тормозных материалов типа КФ-3 высок, что и отвечает назначению этих материалов. Из этих двух примеров следует, что утверждение, высказанное выше, справедливо

Пластмассы – получение пластмасс, состав, свойства, свариваемость

Установки для автоматической сварки продольных швов обечаек – в наличии на складе!
Высокая производительность, удобство, простота в управлении и надежность в эксплуатации.

Сварочные экраны и защитные шторки – в наличии на складе!
Защита от излучения при сварке и резке. Большой выбор.
Доставка по всей России!

Состав и свойства

Получение пластмасс

Пластмассы — это материалы, полученные на основе синтетических или естественных полимеров (смол). Синтезируются полимеры путем полимеризации или поликонденсации мономеров в присутствии катализаторов при строго определенных температурных режимах и давлениях.

В полимер с различной целью могут вводиться наполнители, стабилизаторы, пигменты, могут составляться композиции с добавкой органических и неорганических волокон, сеток и тканей.

Таким образом, пластмассы в большинстве случаев являются многокомпонентными смесями и композиционными материалами, у которых технологические свойства, в том числе и свариваемость, в основном определяются свойствами полимера.

В зависимости от поведения полимера при нагревании различают два вида пластмасс — термопласты, материалы, которые могут многократно нагреваться и переходить при этом из твердого в вязко-текучее состояние, и реактопласты, которые могут претерпевать этот процесс лишь однократно.

Особенности строения

Пластмассы (полимеры) состоят из макромолекул, в которых более или менее регулярно чередуется большое число одинаковых или неодинаковых атомных группировок, соединенных химическими связями в длинные цепи, по форме которых различают линейные полимеры, разветвленные и сетчато-пространственные.

По составу макромолекул полимеры делятся на три класса:

1) карбоцепные, основные цепи которых построены только из углеродных атомов;

2) гетероцепные, в основных цепях которых, кроме атомов углерода, содержатся атомы кислорода, азота, серы;

3) элементоорганические полимеры, содержащие в основных цепях атомы кремния, бора, алюминия, титана и других элементов.

Макромолекулы обладают гибкостью и способны изменять форму под влиянием теплового движения их звеньев или электрического поля. Это свойство связано с внутренним вращением отдельных частей молекулы относительно друг друга. Не перемещаясь в пространстве, каждая макромолекула находится в непрерывном движении, которое выражается в смене ее конформаций.

Гибкость макромолекул характеризует величина сегмента, т. е. число звеньев в ней, которые в условиях данного конкретного воздействия на полимер проявляют себя как кинетически самостоятельные единицы, например в поле ТВЧ как диполи. По реакции к внешним электрическим полям различают полярные (ПЭ, ПП) и неполярные (ПВХ, полиаксилонитрил) полимеры. Между макромолекулами действуют силы притяжения, вызванные ван-дер-ваальсовым взаимодействием, а также водородными связями, ионным взаимодействием. Силы притяжения проявляются при сближении макромолекул на 0,3—0,4 им.

Полярные и неполярные полимеры (пластмассы) между собой несовместимы — между их макромолекулами не возникает взаимодействия (притяжения), т. е. они между собой не свариваются.

Надмолекулярная структура, ориентация

По структуре различают два вида пластмасс — кристаллические и аморфные. В кристаллических в отличие от аморфных наблюдается не только ближний, но и дальний порядок. При переходе из вязко-текучего состояния в твердое макромолекулы кристаллических полимеров образуют упорядоченные ассоциации-кристаллиты преимущественно в виде сферолитов (рис. 37.1). Чем меньше скорость охлаждения расплава термопласта, тем крупнее вырастают сферолиты. Однако и в кристаллических полимерах всегда остаются аморфные участки. Изменяя скорость охлаждения, можно регулировать структуру, а следовательно, и свойства сварного соединения.

Резкое различие продольных и поперечных размеров макромолекул приводит к возможности существования специфического для полимеров ориентированного состояния. Оно характеризуется расположением осей цепных макромолекул преимущественно вдоль одного направления, что приводит к проявлению анизотропии свойств изделия из пластмассы. Получение ориентированных пластмасс осуществляется путем их одноосной (5—10-кратной) вытяжки при комнатной или повышенной температуре. Однако при нагреве (в том числе и при сварке) эффект ориентации снижается или исчезает, так как макромолекулы вновь принимают термодинамически наиболее вероятные конфигурации (конформации) благодаря энтропийной упругости, обусловленной движением сегментов.

Реакция пластмасс на термомеханический цикл

Все конструкционные термопласты при нормальных температурах находятся в твердом состоянии (кристаллическом или застеклованном). Выше температуры стеклования (Тст) аморфные пластмассы переходят в эластическое (резиноподобное) состояние. При дальнейшем нагреве выше температуры плавления (Tпл) кристаллические полимеры переходят в аморфное состояние. Выше температуры текучести ТT и кристаллические, и аморфные пластмассы переходят в вязкотекучее состояние Все эти изменения состояния обычно описываются термомеханическими кривыми (рис. 37.2), являющимися важнейшими технологическими характеристиками пластмасс. Образование сварного соединения происходит в интервале вязкотекучего состояния термопластов. Реактопласты при нагреве выше ТT претерпевают радикальные процессы и в отличие от термопластов образуют пространственные полимерные сетки, не способные к взаимодействию без их разрушения, на что требуется применение специальных химических присадок.

Основные пластмассы для сварных конструкций

Наиболее распространенными конструкционными пластмассами являются группы термопластов на основе полиолефинов: полиэтилена высокого и низкого давления, полипропилена, полиизобутилена.

Полиэтилен [..—СН2—СН2—. ]n высокого и низкого давления — кристаллические термопласты, отличающиеся между собой прочностью, жесткостью, температурой текучести. Полипропилен [—СН2—СН(СН3)—]n более температуростоек, чем полиэтилен, и обладает большей прочностью и жесткостью.

В значительных объемах используются хлорсодержащие пластики на основе полимеров и сополимеров винилхлорида и винилиденхлорида.

Поливинилхлорид (ПВХ) [—(СН2—СНСl—)]n — аморфный полимер линейного строения, в исходном состоянии является жестким материалом При добавке к нему пластификатора можно получить очень пластичный и хорошо сваривающийся материал — пластикат. Из жесткого ПВХ — винипласта — изготавливают листы, трубы, прутки, а из пластиката — пленку, шланги и другие изделия. Из ПВХ изготавливаются также вспененные материалы (пенопласты).

Читайте также:
Дизайн квартиры в скандинавском стиле: фото жилья в Стокгольме

Значительную группу полимеров и пластмасс на их основе составляют полиамиды, содержащие в цепи макромолекул амидные группы [—СО—Н—]. Это в большинстве кристаллические термопласты с четко выраженной температурой плавления. Отечественная промышленность выпускает главным образом алифатические полиамиды, используемые для изготовления волокон, отливки деталей машин, получения пленок. К полиамидам относятся, в частности, широко известные поликапролактам и полнамид-66 (капрон).

Наибольшую известность из группы фторлонов получил политетрафтор-этилен-фторлон-4 (фторопласт 4). В отличие от других термопластов при нагреве он не переходит в вязкотекучее состояние даже при температуре деструкции (около 415°С), поэтому его сварка требует особых приемов. В настоящее время химической промышленностью освоен выпуск хорошо сваривающихся плавких фторлонов; Ф-4М, Ф-40, Ф-42 и др. Сварные конструкции из фторсодержащих пластиков обладают исключительно высокой стойкостью к агрессивным средам и могут воспринимать рабочие нагрузки в широком диапазоне температур.

На основе акриловой и метакриловой кислоты производятся акриловые пластики. Наиболее известная в практике производная на их основе — пластмасса полнметилметакрилат (торговая марка «плексиглас»). Эти пластики, обладающие высокой прозрачностью, используются как светопроводящие изделия (в виде листа, прутков и т. д.) Нашли применение также сополимеры метилметакрилата и акрилонитрила, которые обладают большей прочностью и твердостью. Все пластики этой группы хорошо свариваются.

Хорошей прозрачностью отличается группа пластиков на основе полистирола. Этот линейный термопласт хорошо сваривается тепловыми способами.

Для изготовления сварных конструкций преимущественно в электротехнической промышленности используют сополимеры стирола с метилстиролом, акрилонитрилом, метилметакрилатом и, в частности, акрилонитрилбутадиенстирольные (АБС) пластики. Последние отличаются от хрупкого полистирола более высокой ударной прочностью и теплостойкостью.

В сварных конструкциях находят применение пластмассы на основе поликарбонатов — сложных полиэфиров угольной кислоты. Они обладают более высокой вязкостью расплава, чем другие термопласты, однако свариваются удовлетворительно. Из них изготавливают пленки, листы, трубы и различные детали, в том числе декоративные. Характерными особенностями являются высокие диэлектрические и поляризационные свойства.

Формообразование деталей из пластмасс

Термопласты поставляются для переработки в гранулах размером 3—5 мм. Основными технологическими процессами изготовления полуфабрикатов и деталей из них являются: экструзия, литье, прессование, каландрирование, производимые в температурном интервале вязкотекучего состояния.

Трубопроводы из полиэтиленовых и поливинилхлоридных труб применяют для транспорта агрессивных продуктов, в том числе нефти и газа с содержанием сероводорода и углекислоты и химических (неароматических) реагентов в химическом производстве. Резервуары и цистерны для перевозки кислот и щелочей, травильные ванны и другие сосуды облицовываются пластмассовыми листами, соединяемыми с помощью сварки Герметизация пластикатом помещений, загрязняемых изотопами, покрытие полов линолеумом также осуществляются с помощью сварки. Консервация пищевых продуктов в тубы, коробки и банки, упаковка товаров и почтовых посылок резко ускоряются с применением сварки.

Машиностроительные детали. В химическом машиностроении свариваются корпуса и лопатки различного рода смесителей, корпуса и роторы насосов для перекачки агрессивных сред, фильтры, подшипники и прокладки из фторопласта, из полистирола сваривается осветительная арматура, из капрона неэлектропроводные шестерни, валики, муфточки, штоки, из фторлона — несмазывающиеся подшипники, вытеснители топлива и т д.

Оценка свариваемости пластмасс

Основные стадии процесса сварки

Процесс сварки термопластов состоит в активации свариваемых поверхностей деталей, либо находящихся уже в контакте (сварка ТВЧ, СВЧ), либо приводимых в контакт после (сварка нагретым инструментом, газом, ИК-излучением и т. д.) или одновременно с активизацией (сварка трением, УЗ-сварка).

При плотном контакте активированных слоев должны реализоваться силы межмолекулярного взаимодействия.

В процессе образования сварных соединений (при охлаждении) происходит формирование надмолекулярных структур в шве, а также развитие полей собственных напряжений и их релаксация. Эти конкурирующие процессы определяют конечные свойства сварного соединения. Технологическая задача сварки состоит в том, чтобы максимально приблизить по свойствам шов к исходному — основному материалу.

Механизм образования сварных соединений

Реологическая концепция. Согласно реологической концепции, механизм образования сварного соединения включает два этапа — на макроскопическом и микроскопическом уровнях. При сближении под давлением активированных тем или иным способом поверхностей соединяемых деталей вследствие сдвиговых деформаций происходит течение расплава полимера. В результате этого удаляются из зоны контакта ингредиенты, препятствующие сближению и взаимодействию ювенильных макромолекул (эвакуируются газовые, окисленные прослойки). Вследствие разности скоростей течения расплава не исключено и перемешивание макрообъемов расплава в зоне контакта. Только после удаления или разрушения дефектных слоев в зоне контакта, когда ювенильные макромолекулы сблизятся на расстояния действия Ван-дер-Ваальсовых сил, возникает взаимодействие (схватывание) между макромолекулами слоев соединяемых поверхностей деталей. Этот аутогезионный процесс происходит на микроуровне. Он сопровождается взаимодиффузией макромолекул, обусловленной энергетическим потенциалом и неравномерностью градиента температур в зоне свариваемых поверхностей.

Итак, чтобы образовалось сварное соединение двух поверхностей, необходимо прежде всего обеспечить течение расплава в этой зоне.

Течение расплава в зоне сварки зависит от его вязкости: чем меньше вязкость, тем активнее происходят сдвиговые деформации в расплаве — разрушение и удаление дефектных слоев на контактирующих поверхностях, тем меньшее давление необходимо прилагать для соединения деталей.

Вязкость расплава в свою очередь зависит от природы пластмассы (молекулярной массы, разветвленности макромолекул полимера) и температуры нагрева в интервале вязкотекучести. Следовательно, вязкость может служить одним из признаков, определяющих свариваемость пластмассы: чем она меньше в интервале вязкотекучести, тем лучше свариваемость и, наоборот, чем больше вязкость, тем сложнее разрушить и удалить из зоны контакта ингредиенты, препятствующие взаимодействию макромолекул. Однако нагрев для каждого полимера ограничен определенной температурой деструкции Тд, выше которой происходит его разложение — деструкция. Термопласты различаются по граничным значениям температурного интервала вязкотекучести, т. е. между температурой их текучести ТT и деструкции Тд (табл. 37.2).

Читайте также:
Как выбрать и правильно пользоваться краскопультом для потолка?

Классификация термопластов по их свариваемости. Чем шире интервал вязкотекучести термопласта (рис. 37.3), тем практически проще получить качественное сварное соединение, ибо отклонения по температуре в зоне шва отражаются менее на величине вязкости. Наряду с интервалом вязкотекучести и минимальным уровнем в нем значений вязкости заметную роль играет в реологических процессах при образовании шва градиент изменения вязкости в этом интервале. За количественные показатели свариваемости приняты: температурный интервал вязкотекучести ΔT, минимальное значение вязкости ηmin и градиент изменения вязкости в этом интервале.

По свариваемости все термопластичные пластмассы можно разбить по этим показателям на четыре группы (табл. 37.3).

Сварка термопластичных пластмасс возможна, если материал переходит в состояние вязкого расплава, если его температурный интервал вязкотекучести достаточно широк, а градиент изменения вязкости в этом интервале минимальный, так как взаимодействие макромолекул в зоне контакта происходит по границе, обладающей одинаковой вязкостью.

В общем случае температура сварки назначается, исходя из анализа термомеханической кривой для свариваемой пластмассы, принимаем ее на 10—15° ниже Тд. Давление принимается такое, чтобы эвакуировать расплав поверхностного слоя в грат либо разрушить его, исходя из конкретной глубины проплавления и теплофизических показателей свариваемого материала. Время выдержки tCB определяется исходя из достижения квазистационарного состояния оплавления и проплавления либо по формуле

где t — константа, имеющая размерность времени и зависящая от толщины соединяемого материала и способа нагрева; Q — энергия активации; R — газовая постоянная; Т — температура сварки.

При экспериментальной оценке свариваемости пластмасс фундаментальным показателем является длительная прочность сварного соединения, работающего в конкретных условиях по сравнению с основным материалом.

Испытываются образцы, вырубленные из сварного соединения, на одноосное растяжение. При этом временной фактор моделируется температурой, т. е. используется принцип температурно-временной суперпозиции, основанный на допущении, что при данном напряжении связь между длительной прочностью к температурой однозначна (метод Ларсона-Миллера).

Методы повышения свариваемости

Схемы механизма образования сварных соединений термопластов. Повышение их свариваемости может производиться за счет расширения температурного интервала вязкотекучести, интенсификации удаления ингредиентов или разрушения дефектных слоев в зоне контакта, препятствующих сближению и взаимодействию ювенильных макромолекул.

Возможно несколько путей:

введение в зону контакта присадки в случае недостаточного количества расплава (при сварке армированных пленок), при сварке разнородных термопластов присадка по составу должна обладать сродством к обоим свариваемым материалам;

введение в зону сварки растворителя или более пластифицированной присадки;

принудительное перемешивание расплава в шве путем смещения соединяемых деталей не только вдоль линии осадки, но и возвратно-поступательно поперек шва на 1,5—2 мм или наложением ультразвуковых колебаний. Активизация в зоне контакта перемешивания расплава может производиться после оплавления стыкуемых кромок нагревательным инструментом, имеющим ребристую поверхность. Свойства сварного соединения могут быть улучшены последующей термической обработкой соединения. При этом снимаются не только остаточные напряжения, но возможно исправление структуры в шве и околошовной зоне, особенно у кристаллических полимеров. Многие из изложенных мероприятий приближают свойства сварных соединений к свойствам основного материала.

При сварке ориентированных пластмасс во избежание потери их прочности вследствие переориентации при нагреве до вязко-текучего состояния полимера применяют химическую сварку, т. е. процесс, при котором в зоне контакта реализуются радикальные (химические) связи между макромолекулами. Химическую сварку применяют и при соединении реактопластов, детали из которых не могут переходить при повторном нагреве в вязкотекучее состояние. Для инициирования химических реакций в зону соединения при такой сварке вводят различные реагенты в зависимости от соединяемого вида пластмасс. Процесс химической сварки, как правило, производится при нагреве места сварки.

Волченко В.Н. Сварка и свариваемые материалы т.1. -M. 1991

Много шума из полимеров

Сегодня вокруг пластика ведутся ожесточённые споры. В Европе давно сортируют мусор, всё чаще на бирках можно увидеть «сделано из переработанного сырья», всё в большем количестве магазинов мы можем выбрать бумажный пакет вместо обычного полиэтиленового. Как устроен пластик, каким он бывает и чем он вреден для окружающей среды? Разбираемся с материаловедом Катей Анисимовой.

Что мы называем пластиком?

Пластик — это материал, состоящий из синтетических или полусинтетических полимеров. Полимеры — это огромные молекулы, которые состоят из повторяющихся звеньев — мономеров. Полимеры получают в результате полимеризации — процесса объединения множества маленьких молекул в одну большую.

Все полимеры можно разделить на натуральные и синтетические.

Натуральные полимеры — те, что встречаются в природе. Белки и нуклеиновые кислоты в теле человека, целлюлоза в растениях и хитин в экзоскелете насекомых — примеры натуральных полимеров.

Синтетическими называют все полимеры, сделанные человеком. Их получают двумя способами: путём переработки натуральных полимеров в искусственные полимерные материалы и в результате синтеза из органических полимеров с относительно малой массой. Синтетические полимеры лёгкие, долговечные, им можно придать практически любую форму.

Итак, пластик — это бесконечные цепи полимерных молекул.

Как делают пластик?

Пластмассы можно получать из природных веществ, таких как целлюлоза и уголь. Однако в основном для этого используют сырую нефть. На первом этапе производства пластика, в ходе перегонки, нефть разделяется на фракции — группы более лёгких компонентов. Каждая фракция представляет собой смесь цепей, состоящих из углерода и водорода. Они различаются по размеру и структуре молекул. Для производства пластика нужны низкомолекулярные соединения.

Итак, взяли сырую нефть, разделили на фракции, выделили простые низкомолекулярные соединения. Что дальше?

Есть два основных способа превращения низкомолекулярных соединений в высокомолекулярные полимеры: полимеризация и поликонденсация. В обоих случаях маленькие молекулы объединяются в большие цепи, но в результате поликонденсации образуется ещё и побочный продукт, например вода.

Готовый полимер выглядит как множество маленьких гранул. Чтобы получить пластиковое изделие, такие гранулы смешивают с веществами-добавками, которые придают пластмассе те или иные дополнительные свойства. После этого смесь отправляют в машину для литья пластика, где она перемешивается и приобретает нужную форму.

Читайте также:
Вертикальный газгольдер: обзор моделей и особенности монтажа под ключ
Почему бутылка и игрушка пластиковые, но разные на ощупь?

Пластик бывает разным. Его свойства зависят от особенностей мономера — структурной единицы полимерной молекулы. Для того чтобы определить, какой именно полимер является основой того или иного пластикового изделия, достаточно посмотреть на маркировку.

Не весь пластик можно перерабатывать, а некоторые его типы даже не рекомендуют использовать повторно. Рассмотрим 7 видов маркировок, которые можно найти на привычных предметах.

1. PET (PETE) — полиэтилентерефталат

Полиэтилентерефталат — самый распространённый вид пластика. Из него делают бутылки для воды, пакеты, пластиковую упаковку. Полиэтилен предназначен для одноразового использования — повторное увеличивает риск роста бактерий: такой пластик трудно обеззараживать, а для надлежащей очистки требуются вредные химикаты. Зато его можно перерабатывать.

2. HDPE — полиэтилентерефталат высокой плотности

Полиэтилентерефталат с плотной «упаковкой» молекул используют для производства более жёсткого пластика. Из него делают молочные бутылки, игрушки, пластиковую мебель. HDPE считается самым перерабатываемым и сравнительно безопасным пластиком. Процесс его переработки технологически прост и экономически выгоден.

3. PVC — поливинилхлорид

Поливинилхлорид — мягкий гибкий пластик, из которого делают пищевую плёнку, игрушки для маленьких детей и домашних животных, упаковку для товаров. Он относительно непроницаем для солнечного света и используется для изготовления садовых шлангов и оконных рам. ПВХ часто называют «ядовитым пластиком». В изделиях из поливинилхлорида содержатся токсины, которые со временем выщелачиваются, то есть выделяются при внешнем воздействии, например при нагревании или попадании в воду. Изделия из поливинилхлорида практически не перерабатываются, их нельзя использовать повторно.

4. LDPE — полиэтилен низкой плотности

Считается наиболее безопасным пластиком. Идёт на изготовление пакетов, которые мы покупаем в магазинах, бутылок и упаковки для хлеба. Перерабатывается не повсеместно, как пластик с маркировкой «1», однако мест переработки становится всё больше (в Европе и Америке).

5. PP — полипропилен

Полипропиленовый пластик прочный и лёгкий, обладает теплостойкими свойствами, а ещё защищает от проникновения влаги. Например, плёнка под крышкой банки с кофе сделана из полипропилена. Из него также изготавливают коктейльные соломинки, упаковку для йогуртов и чипсов. Полипропилен признан годным для повторного использования, однако почти не перерабатывается.

6. PS — полистирол

Полистирол — недорогой, лёгкий в обработке пластик. Из него делаются одноразовые стаканчики, посуда, белые контейнеры для еды на вынос. При этом полистирол — довольно-таки опасное вещество: он может выщелачивать стирол (например, при нагревании в микроволновке), который оказывает канцерогенное воздействие на организм человека. Переработка этого пластика не особо распространена, и около 35% мусора в США составляет именно полистирол. Однако некоторые компании его принимают и используют повторно.

7. OTHER

В эту группу входят пластмассы, не получившие отдельное обозначение, такие как поликарбонат, полиамид и др. Из них делают детские бутылочки, игрушки, бутылки для воды, упаковку. При частом мытье или нагревании эти пластмассы могут выделять бисфенол А — вещество, которое ведёт к гормональным сбоям в организме человека.

Далеко не весь пластик, который производится, впоследствии перерабатывается. Это связано не только с техническими проблемами, но и с тем, что во многих странах нет культуры разделения мусора, а также заводов, которые могли бы переработать пластмассу.

На сегодня переработано только 9% пластика, 12% сожжено, 79% находится вокруг нас. Около 8 миллионов тонн ежегодно сбрасывается в океан.

Почему пластик так вреден для окружающей среды?

Производство пластика и его обработка наносят экологии комплексный вред. Самый заметный ущерб пластиковые отходы причиняют океану, точнее, его жителям. Морские животные путают пластик с едой и умирают либо от отравления, либо от голода; в пакетах запутываются черепахи и другие животные. К 2015 году уже 90% морских птиц употребили в пищу пластмассу. В 2018-м на берег Испании вынесло мёртвого кашалота. В его желудке обнаружили 32 килограмма пластиковых пакетов, канистру и сеть.

Эти цифры шокируют, но есть не менее опасная штука — микропластик, частицы пластмассы размером не более 5 мм, образовавшиеся в результате действия ультрафиолета на плавающие в океане отходы. Под влиянием солнечного света они распадаются на мелкие частицы, и сейчас их около 51 триллиона.

Учёные задаются вопросом: насколько токсичен микропластик? Для того чтобы изделие выглядело более привлекательно, на этапе производства в пластик добавляют разные вещества, которые не вредны до тех пор, пока не начнут выщелачиваться. Бисфенол А делает пластик более прозрачным, но при этом влияет на гормональную систему; диэтилгексилфталат делает пластик более гибким, но может вызвать рак. Пока не очень понятно, остаются ли эти вещества в частицах пластика. Проблема в том, что их поедает планктон, а им питается и мелкая рыба, и крабы, и устрицы — животные, которых ест человек. Микропластик был найден в морской соли, воде из-под крана, в пыли, в воздухе. У 8 из 10 младенцев и практически у всех взрослых в организме находят фталаты — распространённые пластиковые добавки.

Если пластик — это так плохо, почему его не запрещают?

Всё не так просто. Пластиковое загрязнение — одна из множества экологических проблем, с которыми мы столкнулись. Некоторые заменители пластика тоже наносят вред окружающей среде.

Не так давно правительство Дании опубликовало исследование, где говорится, что энергозатраты на производство пластикового пакета настолько меньше аналогичных расходов на тканевую сумку, что для того, чтобы товар окупился, потребитель должен использовать его 7100 раз, а изготовитель — наладить бесконечный производственный цикл. Остаётся искать разумный компромисс и выбирать наименьшее из зол.

Любое производство так или иначе наносит вред окружающей среде. Пластик справляется с задачами, решить которые по-другому пока не получается. Например, если не упаковывать продукты в пластиковые пакеты, они быстрее портятся. А протухшая еда выделяет в атмосферу вредные вещества, в том числе метан. Решение, которое кажется правильным в ситуации с упаковкой, — биоразлагаемые пакеты.

Читайте также:
Зачем нужна влажная и регулярная уборка дома, как ее проводить быстро и качественно
Биоразлагаемые пакеты. Они действительно разлагаются?

Биоразлагаемые пакеты делают из биопластика, который по свойствам очень похож на обычный. Но получают такую пластмассу из возобновляемых источников биомассы, таких как крахмал, растительные жиры и масла. Все биопластики более экологичны на этапе производства, а приставка «био-» означает, что они могут быть переработаны живыми организмами. Этот пластик действительно разлагается и гораздо менее вреден для окружающей среды на всех этапах — от производства до переработки.

Однако его свойства и особенности разложения изучены не до конца, поэтому нельзя сказать со стопроцентной уверенностью, что суммарно биопластик наносит меньший вред и может решить проблему пластмассового загрязнения.

Виды пластмасс

Пластмассы – материалы, получаемые с помощью натуральных или синтезированных полимеров (высокомолекулярных соединений). Невероятная популярность, ставшая причиной их широчайшего распространения и применения, объясняется, прежде всего, тем, что эти материалы легко поддаются совместному термическому и механическому воздействию. Это даёт возможность придавать пластическим массам нужную форму, сохраняющуюся после остывания и отвердевания.

  • Классификация
  • Список
  • Маркировка и применение

Открытое исследователем из Британии Александром Парксом в 1855 году явление, получило микроскопическое подтверждение благодаря профессору из Германии Герману Штаудингеру, доказавшему существование макромолекул лишь в 1953 году. Это и стало отправной точкой разработки промышленных технологий для изготовления искусственных полимеров.

С тех самых пор прошло немало времени, и пластмассы превратились чуть ли не в основу современной экономики, значительно потеснив металлы, дерево и другие материалы. Произошло это по причине целого ряда отменных качеств полимеров:

  • Простоты и экономичности изготовления. Для отливки, даже достаточно сложной конфигурации (это ещё одно из достоинств полимеров, высоко ценимое конструкторами, дизайнерами и изготовителями) не требуется сложного процесса формовки и значительного количества энергии.
  • Изначальный цвет исходного материала убирает необходимость покраски из технологического процесса, что очень удобно и позволяет сохранять первоначальные тона в течение всего времени пользования готовым изделием.
  • Возможности механической обработки, отличающейся простотой и лёгкостью. Это устраняет потребность в дорогостоящем обрабатывающем оборудовании.
  • Высокой эластичности и малого веса. Отсюда – удобство в применении и эксплуатации.
  • Стойкости к химическим, механическим, температурным, электрическим, коррозионным воздействиям. Недаром пластмассы находят широчайшее применение в качестве диэлектриков и теплоизолирующих материалов. Кроме того, они – отличные поглотители шумов.
  • Дешевизны – что вкупе со всеми вышеуказанными свойствами является решающим фактором практического применения полимеров в любой сфере человеческой деятельности.

Сегодня пластмассы можно увидеть повсеместно в строительстве, машиностроении, энергетике; на транспорте, в медицине, в быту и сельском хозяйстве.

Классификация

В основе классификации полимеров могут лежать:

  • Способы их получения. Таковых используется четыре:
  • Литьё в заранее изготовленные формы под давлением. Чему предшествует предварительное измельчение и расплавление зёрен пластмассы, объём которых впрыскивается в нужную форму.
  • Формирование окончательных контуров изделия после литья, выполняемого с помощью потока воздуха, направляемого внутрь разогретой заготовки.
  • Экструзия, в результате которой заготовка приобретает трубчатую форму. Происходит это за счёт прохождения пластмассой сопла и фильеры (формовочной головки).
  • Каландрирование – роликовая прокатка, предназначенная для изготовления листового материала заданных параметров: толщины, длины, ровности и гладкости поверхности.

Исходные материалы, в качестве которых могут служить:

  • природные высокомолекулярные соединения: жевательная резинка, каучук, шеллак, разнообразные смолы;
  • модифицированные химическими методами природные материалы: галатит, коллаген, нитроцеллюлоза, резина;
  • полностью синтезированные соединения в виде: эпоксидной смолы, полиэтилена, полипропилена, поливинилхлорида, карболита.
  • Физико-химическая структура, определяющая технологию процесса перехода текучей вязкой массы в твёрдое состояние, подразделяющая пластмассы на ряд типов:
  • Термопласты – виды пластических материалов, хорошо подверженных термическому воздействию, приводящему к созданию необходимой формы.
  • Реактопласты – пластики, более устойчивые к воздействию температур материалы, не поддающиеся переходу в вязко текучее состояние, после процесса отверждения. Что объясняется сильными поперечными молекулярными связями.
  • Эластомеры – восстанавливающие свою форму после деформации материалы (характерным представителен их выступает полиизопрен – составная часть натурального каучука).
  • Газонаполненные пластмассы – сверхлёгкие вспененные материалы.

Список

Сегодня в список пластмасс входят десятки различных наименований: от акрилонитрилов – до хлорвинила. И это – только названия, взятые из специализированных справочных изданий русскоязычной научно-технической литературы. Есть заглянуть в иностранные пособия, то их количество резко возрастёт. Естественно, такое состояние дел вносит некоторую неразбериху, осложняемую постоянным появлением всё новых и новых образцов пластиков. Выручают лишь химические названия для апробированных в течение продолжительного времени материалов.

Маркировка и применение

С целью наведения порядка и проведения организованной утилизации пластмассовых изделий, в 1988 году Обществом пластмассовой промышленности (которое было создано в 1937 году, а позднее переименовано в Ассоциацию индустрии пластмасс), объединяющем в своих рядах лиц, задействованных в пластмассовой индустрии, была введена система действующей на сегодняшний день маркировки.

Она включает в себя 7 кодов, имеющих русское и англоязычное название, каждый из которых представлен значком-треугольником в виде трёх стрелок, внутри которых находится число, обозначающее тип пластического материала), где:

  • 01 – это полиэтилентерефталат, лавсан (ПЭТ, ПЭТФ);
  • 02 – полиэтилен, обладающий высокой плотностью, получаемый при низком давлении (ПЭВП, ПЭНД);
  • 03 – поливинилхлорид (ПВХ);
  • 04 – полиэтилен низкой плотности, изготавливаемый под воздействием высокого давления (ПЭНП, ПЭВД);
  • 05 – полипропилен (ПП);
  • 06 – полистирол (ПС);
  • 07 – прочие пластики.

Данные маркированные виды пластмасс находят очень широкое применение, а именно:

  • ПЭТ, ПЭТФ – употребляется при изготовлении обивок, упаковок, посуды для хранения и распития напитков. Предпочтительнее – одноразового употребления, так как при вторичном использовании материал может выделять вредности.
  • ПЭВП, ПЭНД – для изготовления тары пищевого и бытового назначения. Материал безопасен, но иногда может быть токсичен, в связи с выделениями формальдегида.
  • ПВХ – пластик широкого спектра сфер применения в виде покрытий, труб и трубок, строительных изделий, тары для синтетических моющих средств. Однако во время горения он чрезвычайно ядовит!
  • ПЭНП, ПЭВД – это плёнки, пакеты, мусорные мешки, гибкая тара для жидкостей. Безопасен, хотя представляет вред в качестве загрязнителя окружающей среды.
  • ПП – из него изготовляются трубы, арматура для транспорта, пищевая упаковка, детские игрушки. Если исключить возможность выделения ядовитого формальдегида, то этот полимер будет практически безвреден.
  • ПС – отличный теплоизолятор и материал для упаковок, а также – сырьё для коробок, игрушек, ручек, столовых принадлежностей. При сгорании – это опаснейший яд!
Читайте также:
Зеркальная краска - применение и особенности нанесения

Прочие виды пластмасс находят применение в точной механике, электротехнике, при создании разнообразной аппаратуры и бутилированной тары для воды.

Пластмассы – великолепный материал, самого широкого спектра назначения и употребления. При умелом использовании, они достаточно безопасны. Но вместе с тем эти высокомолекулярные соединения несут с собой проблемы сбора, утилизации и безвредной переработки в употреблении изделий. Совместно с загрязнением воды и почвы, это – серьёзнейшие вопросы, требующие безотлагательного решения всего мирового сообщества на основе современных организационных и технологических решений.

Виды пластмасс

Пластмасса — это высокопрочный, эластичный материал, который при нагревании становится мягким и пластичным. В этот промежуток времени из нее можно слепить практически все что угодно. После остывания изделие вновь становится твердым.

Краткая история появления

Считается, что первооткрывателем пластмассы был британский изобретатель Паркс. В 1855г. он решил чем-нибудь заменить материал бильярдных шаров. В то время они состояли из слоновой кости.

Он смешал масло камфорного дерева, нитроцеллюлозу (хлопок + азотная и серная кислота) и спирт. При нагревании получил однородную жидкую смесь, которая при охлаждении застыла и стала твердой. Это и была первая разновидность пластмассы, полученная искусственным путем из природных и химических материалов.

И только через сто лет в 1953г. немецкий профессор Штаудингер открыл синтетическую макромолекулу (молекула с очень большим количеством атомов и большой массой). Она то и стала базовой прародительницей для получения разнообразных видов промышленного пластика.

Если не вдаваться в научные подробности, новые виды пластмасс создаются следующим образом: в макромолекуле, особым образом, меняют расположение звеньев малых молекул. Эти цепочки называются полимерами. От этих «перестроений» рождаются материалы с определенными физико-механическими характеристиками.

Химики всего мира сразу, после этого открытия, стали выстраивать из этих кубиков трансформеров конструкции с ранее невиданными свойствами.

Свойства

Изделия из пластмасс имеют следующие особенности:

1. Для дизайнеров и инженеров это тот материал, из которого можно изготавливать самые сложные по форме конструкции.
2. Отличаются экономичностью в сравнении с аналогичными продуктами из других материалов. Малые энергетические затраты при производстве. Простота формовки.
3. Почти все виды пластика не нуждаются в покраске, так как они имеют свои различные цветовые гаммы.
4. У них небольшой вес.
5. Обладают высокой эластичностью.
6. Являются отличными диэлектриками (т.е. практически не проводят электрический ток).
7. Обладают низкой теплопроводностью (отличные теплоизоляторы).
8. У материалов высокий коэффициент шумоизоляции.
9. Не подвержены, в отличие от металлов коррозии.
10. Имеют хорошую устойчивость к перепадам дневных и межсезонных температур.
11. У пластиков высокая стойкость ко многим агрессивным химическим средам.
12. Они могут выдержать большие механические нагрузки.

Применение пластмасс

Пластмассы прекрасно могут заменять функции многих, более дорогих в изготовлении, металлических, бетонных или деревянных изделий. И в промышленности и в быту этот материал используется повсеместно.

1. На наземном, морском и авиационном транспорте применение пластмассовых частей и деталей машин существенно снижает их вес и стоимость.

2. В машиностроении из пластика изготавливают: технологическую оснастку; подшипники скольжения; зубчатые и червячные колеса; детали тормозных устройств; рабочие емкости и прочее.

3. В электротехнике многие виды пластмасс используют для производства корпусов приборов, изоляционного материала и др.

4. В строительстве применяют сделанные из пластика несущие конструкции, отделочные и кровельные материалы, вентиляционные устройства, навесы, панели, двери, окна, рабочий инструмент и др.

5. В сельском хозяйстве из пластиковых полупрозрачных листов сооружают теплицы.

6. В медицине большинство аппаратов и приборов состоят из пластмассовых частей и деталей. А многие человеческие органы чаще всего заменяют их пластиковыми аналогами.

7. В быту полно изделий из пластика. Это — посуда, телевизоры, компьютеры, мобильные телефоны, обувь, одежда и др.

Маркировка пластмасс

Умение правильно расшифровывать буквенную маркировку пластика необходимо хотя бы для того, чтобы не нанести непоправимый вред здоровью при пользовании изделиями из этого материала.

Некоторые виды пластика способны медленно разрушать организм человека. Отказаться от них полностью мы не сможем, но уменьшить отрицательное влияние вполне реально.

Внимательно изучайте товар, который планируете купить. Производитель обязан маркировать свои изделия. Если специальное обозначение отсутствует — это должно вас насторожить.

Сами пластмассы не являются канцерогенами, а ими могут быть некоторые вещества в них содержащиеся. Они добавляются производителями для получения тех или иных свойств материала.

Определиться с типом пластика возможно, если на изделии имеется соответствующая маркировка. Обозначение часто наносят в виде треугольника, стороны которого состоят из трех стрелок. Под фигурой – аббревиатура, а внутри – цифра. На промышленных продуктах маркировка обычно выштамповывается в своеобразных скобках. Например, это может выглядеть так: >PC PUR >PP/EPDM – так обозначается полиэтилен высокой плотности и полиэтилен низкого давления. Используют при изготовлении пластиковых пакетов, пищевых контейнеров, посуды, тары для моющих средств, ненагруженных деталей оборудования, покрытий, футляров и фольги. Относительно безопасен, но может выделять токсичное вещество (формальдегид).

(3) PVC или V — это маркировка поливинилхлорида (или просто — ПВХ). Используется только в технических целях при производстве химического оборудования, различных деталей, элементов напольных покрытий, изоленты, жалюзи, мебели, окон, труб и тары. Эти виды пластмасс при сжигании выделяют много ядовитых веществ.

Читайте также:
Декорируем детскую пенопластовыми фигурками: идеи и особенности

(4) LDPE или PEBD – обозначение полиэтилена низкой плотности и высокого давления. Из него изготавливают пакеты, брезент, мусорные мешки, компакт-диски и линолеум. Относительно безопасен для человека, но вреден в плане экологии.

(5) PP – маркировка полипропилена. Используют для изготовления детских игрушек, пищевых контейнеров, упаковок и медицинских шприцов. Идеальный материал для труб, элементов холодильного оборудования и деталей в автомобильной промышленности. Практически безвреден, хотя в некоторых случаях может выделяться формальдегид – ядовитый для здоровья человека газ.

(6) PS – полистирол. Из него изготавливают сэндвич-панели, теплоизоляционные строительные плиты, оборудование, изоляционные пленки, стаканчики, чашки, столовые приборы, пищевые контейнеры, лоточки для различных видов продуктов. Не рекомендуется для повторного использования. В случае горения выделяет ядовитый стирол.

(7) O или OTHER– полиамид, поликарбонат и другие виды пластмасс. Используют в производстве точных деталей машин, радио- и электротехники, аппаратуры, а также при изготовлении бутылок для воды, игрушек, бутылочек для детей и упаковок. При частом нагревании или мытье выделяют вещество (бисфенол А), ведущее к гормональным сбоям в человеческом организме.

В строительстве часто используют следующие виды пластика:

Полимербетон. Это композиционный материал, созданный на основе термореактивных полимеров на основе эпоксидной смолы. Хрупкость этого пластика нивелируется волокнистыми наполнителями – стекловолокном и асбестом. Полимербетон применяется при изготовлении конструкций, стойких к различным агрессивным средам.

Стеклопластик – листовой материал из тканей и стеклянных волокон, связанных полимером.

• Напольные материалы – это разные виды вязких жидких составов на основе полимеров и рулонные покрытия. Широко применяется в строительстве поливинилхлоридный линолеум. Он обладает хорошими теплозвукоизоляционными показателями.

К термореактивным видам пластмасс относятся:

Фенопласт. Применяется для изготовления вилок, розеток, пепельниц корпусов сотовых телефонов, радиоприборов и изделий галантереи.

Аминопласты. Используют в производстве электротехнических деталей, клея для дерева, пенистых материалов, галантереи и тонких покрытий для украшений.

Стекловолокниты. Они чаще всего, применяются в машиностроении для изготовления крупногабаритных изделий несложных форм (лодок, кузовов автомобилей, корпусов приборов и пр.) и силовых электротехнических деталей.

Полиэстеры – на их основе создают части автомобилей, спасательные лодки, корпусы летательных аппаратов, кровельные плиты для крыш, мебель, мачты для антенн, плафоны ламп, удочки, лыжи и палки, защитные каски и др.

Эпоксидная смола — применяется как изоляционный материал: в трансформаторах, электромашинах и приборах, в радиотехнике (для печатных схем) и при производстве телефонной арматуры.

Производство

Основным сырьем при производстве пластмасс является этилен. С его помощью получают полиэтилен, полистирол и поливинилхлорид.

Нарушение технологии режима полимеризации, ухудшает качество готовой продукции. В ней могут появиться поры в виде пузырьков и разводов. Существуют следующие виды пористости пластмассы: гранулярная, газовая и пористость сжатия. Такие дефекты недопустимы при изготовлении продуктов, влияющих на здоровье человека, например съемных протезов. Для их изготовления используются базисные пластмассы (самотвердеющие, при смешивании специального порошка и жидкости, материалы).

Существует несколько основных технологий производства пластмассовых изделий:

1. Технология выдувания. Хорошо разогретая формовочная масса заливается в открытую опоку, после чего ее герметично закрывают. Затем туда подается сжатый воздух, который распыляет горячий пластик по стенкам заданной формы.
2. Формовка посредством вакуума (процесс изготовления проводится с перепадами воздушного давления).
3. Технология литья. Жидкая пластмасса заливается в специальные емкости, в которых происходит охлаждение и формовка материала.
4. Метод экструзии. Размягченную пластичную массу, продавливают через специальные отверстия в приспособление, которое формирует готовое изделие.
5. Прессование. Это самый распространенный способ получения продукции из термоактивных пластмасс. Формование выполняется в специальных опоках под воздействием высокого давления и температуры.

Тонет ли пластик в воде?

По поведению пластика в воде можно определить его вид.

Плотность воды известна – 1,10 г/куб.см. Для разных видов пластмасс она варьируется от 0,90 г/куб.см до 2,21 г/куб.см.

Легче воды только:

1. Полипропилен (0,90 г/куб.см).
2. Полиэтилен высокого давления (0,92 г/куб.см).
3. Полиэтилен низкого давления (0,96 г/куб.см).

Только эти виды пластика будут плавать, остальные пойдут ко дну.

Одним из самых тяжелых видов пластика является фторопласт с плотностью — 2,20 г/куб.см.

Металлопластиковые трубы

Рано или поздно наступает время, когда в доме (будь он частный, многоквартирный или административный) приходится полностью или частично менять трубы либо прокладывать новые. Например, когда трубы отопления после многолетней работы уже не греют, а водоснабжения – протекают, или когда по полу невозможно пройти босиком без риска для здоровья – настолько он ледяной. И если раньше без помощи специалистов было не обойтись, то сегодня благодаря новым технологиям можно монтировать трубы самостоятельно. О том, как выбрать и устанавливать современные трубы, читайте в этой статье.

1. Какие бывают трубы

Существуют 5 основных видов труб:

Каждый из вышеперечисленных видов подходит для определённого назначения (системы отопления, водоснабжения, тёплого пола и др.), способа прокладки трубопровода (открытого, скрытого или комбинированного), а также свойств жидкости в помещении, где будет проводиться ремонт (максимальной и минимальной температуры и давления).

Однако если в двадцатом веке использовались только тяжёлые металлические трубы (например, мы ещё помним уходящие в прошлое неэстетичные стальные), то сегодня им на смену приходят лёгкие металлопластиковые, полипропиленовые и полиэтиленовые.

Металлопластиковые изделия обладают достоинствами металлических и полимерных материалов и, как правило, это оптимальный вариант по цене и качеству.

2. Назначение металлопластиковых труб

Их можно монтировать любым способом и использовать практически по любому назначению, в том числе для:

  • холодного и горячего водоснабжения;
  • радиаторного отопления;
  • напольного и настенного отопления – тёплого пола, тёплых стен (благодаря присущей металлопластику гибкости);
  • систем кондиционирования;
  • систем полива на даче;
  • технологических трубопроводов для пищевых и непищевых жидкостей
  • канализации и др.
Читайте также:
Как выкрутить винт?

3. Что представляют собой металлопластиковые трубы

В разрезе они демонстрируют пятислойную конструкцию: слой алюминия в центре покрыт с внутренней и наружной стороны слоями клея, поверх которого нанесены слои полиэтилена.


Структура металлопластиковой трубы

4. Достоинства и недостатки металлопластиковых труб

продолжительный срок службы – до 50 и более лет; небольшой вес и лёгкость монтажа; неподверженность коррозии и накипи; низкий уровень шума при транспортировке жидкости; отсутствие необходимости окрашивания.

Неустойчивость к прямому воздействию солнечного света и горючесть материала: такой трубопровод не рекомендуется использовать в сварочных и литейных цехах, кузницах, но его можно монтировать в специальных углублениях стен или пола (созданных перфоратором), где ему ничего не угрожает. Возможность расслоения трубы подобно разделению торта на коржи при резком перепаде температур (это связано с разными физическими свойствами алюминия и пластика). К примеру, в пик морозов во время транспортировки или в системах центрального отопления и горячего водоснабжения, когда температура воды в трубах может достигать до + 100°C. Неустойчивость к давлению выше 10 бар: если давление в отопительном котле даже кратковременно превысит эту цифру, то на полвека эксплуатации металлопластиковых труб рассчитывать не стоит (трубу при этом не разорвёт, так как разрушающее давление у неё в несколько раз выше).

5. Размер имеет значение, или как правильно подобрать трубы

Чтобы не выбрасывать деньги на ветер, при выборе новых труб обратите внимание на размер старых. Например, на ваших стальных трубах водоснабжения и отопления написано «ДУ 15»: цифра в этом случае означает внутренний диаметр. На металлопластиковых же трубах производители указывают наружный диаметр и толщину стенки. На замену необходимо подобрать изделие соответствующего или чуть большего диаметра.

Чтобы вычислить внутренний диаметр, нужно от размера наружного диаметра отнять толщину стенки, умноженную на 2. К примеру, на металлопластике указано 20х2,0. 20 – 4 (2,0х2) = 16 мм. Значит, металлопластиковая труба 20х2,0 с внутренним диаметром 16 мм подойдёт для замены стальной трубы ДУ 15.

Таблица 1. Расчёт внутреннего диаметра металлопластиковых труб наиболее ходовых размеров

Наружный диаметр 16 20 26 32 40
Толщина стенки трубы, мм 2,0 2,0 3,0 3,0 3,5
Внутренний диаметр, мм 12 16 20 26 33

6. Какие трубы – лучшего качества

Чтобы выбрать качественную продукцию, обратите внимание на тип материала (указан на самих трубах, этикетке или в описании товара на сайте). Полиэтилены низкого давления PE, PEHD (или HDPE), PERS подвержены быстрому процессу старения под воздействием прямых солнечных лучей: при температуре свыше 75°C они разрушаются.

Наиболее качественные трубы выпускают из полиэтилена марок PEX (получаемого по технологии «сшивки») и PERT (по технологии «сцепления»). Если сравнивать между собой PEX и PERT, то PEX более прочный, так как он дольше противостоит высоким температурам и давлению.

Обычно к надписи PEX добавляют буквы а, b или c, что обозначает способ сшивки полиэтилена и незначительно оказывает влияние на их качество. PEXa и PEХb изготавливают химическим способом, PEXc – физическим, при этом степень сшивки PEXа достигает 75%, PEXb – 65%, PEXc – 60%. Испытания полиэтиленов последних трёх видов температурой в 90°C показали преимущество PEXb.

Немаловажным показателем является и толщина алюминиевого слоя. Чем он толще, тем больше прочность, но хуже гибкость. Оптимальной считается толщина в 0,3 мм. Некоторые производители не указывают толщину алюминиевого слоя, сообщая что данный параметр подобран для достижения баланса прочности и гибкости.

Таблица 2. Сравнительные характеристики металлопластиковых труб различных производителей

Производитель Valtec Ape Henco Uponor Rehau Sanha Oventrop Pro Aqua
Наружный диаметр, мм 16-32 14-32 14-63 16-110 16,2 – 40 16-63 14-63 16-63
Толщина стенки, мм 2-3 2-3 2-4,5 2-10 2,6 – 6 2-4,5 2-6 2-4,5
Толщина алюминиевого слоя, мм 0,25-0,4 0,2-0,45 0,4 – 1,2 нет данных нет данных 0,2-0,8 нет данных от 0,2
Рабочее давление, бар 10 10 10 6-10 10 10 6-10 10
Рабочая температура, °C 95 95 95 95 80 95 90-95 95
Кратковременно допустимый нагрев, °C 130 110 110 нет данных 95 110 нет данных нет данных
Срок службы, лет 50 50 50 50 50 50 50 50
Страна-производитель Италия-Россия Италия Бельгия Финляндия Германия Германия Германия Германия
Материал полиэтилена PEXb PEXb, PERT PEXc PERT, PEXa PEXa, PE PERT, PEHD PEXb, PEXc PERT, PEXb, PEXc, PEHD
Способ поставки бухтами от 50 до 200 м бухтами от 50 до 200 м бухтами от 50 до 200 м, штангами по 4-5 м Бухтами от 50 до 200 м, отрезками по 5 м бухтами от 25 до 100 м, отрезками от 15 до 50 м бухтами от 25 до 200 м, штангами по 5 м бухтами от 50 до 600 м, штангами от 1 до 5 м бухтами от 50 до 200 м, штангами от 20 до 25 м
Цена за 1 погонный метр, руб. от 56 от 62 от 64 от 68 от 200 от 58 от 79 от 42

*Цены по данным интернет-источников действительны на январь 2018 года.

В интернет-магазине https://tdsayany.ru продаются металлопластиковые трубы российско-итальянского производства VALTEC, изготовленные из полиэтилена PEX. Они адаптированы к условиям отечественных систем тепло- и водоснабжения и рассчитаны на 50 лет эксплуатации. Инженерная сантехника VALTEC обладает премией «Бренд года» в РФ и широко используется в нашей стране (только в Московской области ею ежегодно комплектуется более 1,2 млн кв. м жилья).

Читайте также:
Декорируем детскую пенопластовыми фигурками: идеи и особенности

Трубы VALTEC диаметром 16, 20, 26 и 32 мм поставляются бухтами (складываются кругами) от 50 до 200 м.

7. Способы монтажа

Устанавливать разводку можно тремя основными способами:

  1. Скрытый;
  2. Открытый;
  3. Комбинированный.

7.1. Скрытый

При скрытом монтаже трубопровод и все соединения «прячутся» в специальных углублениях – штробах. Снаружи видны лишь фитинги (соединители) и отводы для подключения сантехнических устройств. По окончании работ поверхность заделывается отделочными материалами.

7.1. Скрытый

При скрытом монтаже трубопровод и все соединения «прячутся» в специальных углублениях – штробах. Снаружи видны лишь фитинги (соединители) и отводы для подключения сантехнических устройств. По окончании работ поверхность заделывается отделочными материалами.

Такой способ предохраняет трубы от случайных повреждений и сохраняет эстетичный внешний вид интерьера. Однако этот же вариант монтажа усложняет процесс (в связи с штроблением – прокладкой каналов), увеличивает стоимость работ и не годится для несущих стен.

К скрытому монтажу также относится покрытие труб бетонной стяжкой в системах «тёплый пол».

7.2. Открытый

Если трубы невозможно укрыть в стене (например, после недавнего ремонта), их можно проложить по поверхности. Такой вариант удобен для визуального контроля соединений и позволяет при необходимости быстро прочистить участок или заменить компонент. Дополнительные аргументы в пользу способа – лёгкость и низкая стоимость работ.

7.2. Открытый

Если трубы невозможно укрыть в стене (например, после недавнего ремонта), их можно проложить по поверхности. Такой вариант удобен для визуального контроля соединений и позволяет при необходимости быстро прочистить участок или заменить компонент. Дополнительные аргументы в пользу способа – лёгкость и низкая стоимость работ.

7.3. Комбинированный

Комбинированный способ предполагает укладку на поверхности неотделанных стен, которые затем закрываются коробами из гипсокартона или фальш-панелями из пластика, плитки или других материалов.

7.3. Комбинированный

Комбинированный способ предполагает укладку на поверхности неотделанных стен, которые затем закрываются коробами из гипсокартона или фальш-панелями из пластика, плитки или других материалов.

Для монтажа обычно используется одна из двух систем соединений:

  • последовательная
  • коллекторная.

При последовательной системе труба прокладывается от одного предмета к другому. Эта система подходит для ванных комнат с минимальным количеством объектов (ванная, раковина, стиральная машина).

В коллекторной системе все регулирующие приборы располагаются в компактном коллекторе, который помещается в специальном шкафу. Использование коллектора упрощает рабочий процесс и экономит финансы. Подходит для радиаторной разводки и отопления по типу «тёплый пол».

Советы по монтажу:

Перед началом работ продумайте, как будут размещаться трубы. Затем на стенах или полу помещения маркером или карандашом нанесите линии будущего трубопровода. В качестве стартовой точки используйте место подключения трубы к крану, радиатору или коллектору. Для распаковки бухты не используйте острые предметы, так как они могут повредить материал.

Постарайтесь свести к минимуму количество фитингов, влияющих на стабильность напора: используйте трубогиб. Если того требует инструкция изготовителя, при скрытой прокладке изолируйте фитинги (соединители) плёнкой или трубы целиком специальной гофротрубой.

8. Какие материалы и инструменты нужны

Итак, вы решили прокладывать металлопластиковый трубопровод самостоятельно. Кроме самих труб вам потребуются:

Труборез позволяет отрезать участок от бухты строго перпендикулярно по отношению к продольной оси и добиться герметичного соединения.

Трубогиб – устройство для загиба труб – позволяет сэкономить на угловых фитингах.

Калибратор увеличивает внутренний диаметр трубы у среза и тем самым позволяет вставить фитинг в образовавшееся отверстие.

Пресс-клещи необходимы для опрессовки пресс-фитингов, ключи – для закручивания обжимных фитингов на трубах.

Поскольку пресс-клещи довольно дорогие (например, в нашем магазине самый дешёвый пресс-инструмент от VALTEC с наружным диаметром 16-20 мм стоит более 5,5 тыс. руб.), вы можете взять их в аренду за 350-500 руб. в день в зависимости от модели. Также как и калибратор и трубогиб – за 50 руб./день.

9. Виды фитингов

Соединительные детали рекомендуется использовать той же фирмы, что и трубы.

Монтаж осуществляется с помощью трёх основных видов фитингов:

  1. обжимные (их также называют компрессионными или цанговыми);
  2. пресс-фитинги;
  3. пуш-фитинги.

В ассортименте всех видов фитингов встречаются соединители различных форм – прямые (муфты), угольники, уголки, водорозетки, тройники, крестовины, которые условно можно разделить на два типа:

  • прямые – для соединения двух отрезков системы из одного материала и с одинаковым диаметром;
  • переходные – для соединения отрезков трубопровода из различных материалов или с разными диаметрами.

Нельзя назвать материалы, из которых производятся трубы, только плохими или хорошими – бывает соответствующее качество и производитель. Даже самые качественную продукцию может вывести из строя нарушение технологии монтажа.

9.1. Монтаж с помощью обжимного фитинга

Обжимные фитинги в связи с необходимостью периодического обслуживания подходят для открытого и комбинированного способов монтажа, а вот для прокладки в стенах или под полами они не годятся.

Обжимной фитинг любого производителя состоит из:

  • корпуса (его также называют штуцером) с уплотнительными кольцами;
  • обжимного кольца;
  • гайки.
  1. Обрежьте трубу необходимой длины специальными ножницами или труборезом.
  2. Наденьте на отрезок гайку и обжимное кольцо.
  3. С помощью калибратора увеличьте внутренний диаметр отверстия и снимите фаску (срезанную грань).
  4. Нанесите на штуцер и трубу (с внутренней и внешней стороны в одном сантиметре от среза) силиконовую смазку или жидкое мыло.
  5. Вставьте фитинг в трубу до упора, подтяните к краю среза кольцо и накидную гайку.
  6. Вручную закрутите гайку, а затем затяните её на 2-3 оборота гаечным ключом.

Будьте внимательны! Не повредите резиновые уплотнительные кольца на корпусе фитинга.

Смотрите видео монтажа металлопластиковых труб с помощью пресс-фитинга:

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Foundation-Stroy.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: