Источники постоянного тока

Понятие постоянного тока и характеристика его параметров

Представить существование современного общества без электричества практически невозможно. Оно окружает нас повсюду. По утверждениям специалистов, даже процессы, проходящие внутри живых организмов, напрямую связаны с электричеством. В основе любого электромагнитного явления почти всегда лежит протекание переменного или постоянного электрического тока. Несмотря на то что в большинстве случаев при упоминании электричества подразумеваются физические процессы переменного характера, постоянный ток также играет важную роль и находит достаточно широкое практическое применение.

Определение

Ответ на вопрос, что представляет собой постоянный электрический ток, лежит в слове «постоянный» – неизменный в плане величины и направления. Физически под этим подразумевается однонаправленное движение неменяющегося во времени потока заряженных частиц. Направление постоянного тока совпадает с вектором движения положительно заряженных частиц, а при перемещении отрицательных зарядов направление тока будет противоположно направлению движения.

Итак, постоянный ток – это электрический ток, сохраняющий неизменность величины и направления движения в течение всего времени прохождения физического процесса. Это в теории.

А на практике обычно в качестве постоянного тока подразумевают электрический ток, имеющий столь незначительные изменения своей величины, что ими вполне можно пренебречь. Так как это не оказывает существенного влияния на ёмкостной и индуктивный характер эксплуатируемой электрической цепи.

Источники постоянного тока

В качестве источников постоянного тока нашли и продолжают находить применение:

  • Гальванические элементы, принцип действия которых основан на взаимодействии металлов или оксидов, помещённых в электролитический раствор, что в замкнутой цепи приводит к возникновению электротока постоянной величины.
  • Аккумуляторы – химические источники, способные неоднократно как заряжаться, так и разряжаться.
  • Топливные элементы, преобразующие химическую энергию в энергию электрическую. Их характерной особенностью является достаточно высокий уровень КПД, доходящий до 75%.
  • Солнечные батареи – соединения фотоэлементов, способных напрямую вырабатывать электроток под воздействием солнечного света.
  • Генераторы постоянного тока – электрические машины, предназначенные для преобразования механической энергии в электроэнергию постоянного тока.
  • Термоэлектрогенераторы – устройства, напрямую преобразующие с помощью термоэлементов тепловую энергию в электрический ток.
  • Блоки питания (классические, а также импульсные, высоко оснащённые современным электронным оборудованием), предназначенные для понижения напряжения с помощью трансформаторов и дальнейшего выпрямления переменного тока.

Также в качестве накопителей электрической энергии, при определённых условиях вырабатывающих постоянный электрический ток, могут рассматриваться электрические конденсаторы (устройства, обладающие способностью накапливать электрический заряд и при необходимости – отдавать его) и ионисторы (электрохимические конденсаторы).

Направление постоянного тока и обозначение на электроприборах и схемах

Электрический ток всегда течёт от мест большего потенциала к местам меньшего потенциала. Во всяком случае, так принято считать. То есть условным направлением движения постоянного тока служит направление перемещения положительно заряженных частиц. Если в качестве движущей силы выступают отрицательно заряженные частицы (скажем, электроны в металлах), то направление электрического тока будет прямо противоположным направлению потока движущихся частиц.

В качестве условного обозначения в схемах или на электрических приборах выступают значки: – или =. В описаниях или технической литературе достаточно часто можно встретить сокращение DC, взятое из английского языка и обозначающее однонаправленный (не подверженный переменам направления) электрический ток.

Кроме того, очень часто можно видеть, как зажимы аккумуляторов и батареек маркируются знаками: + («плюс» или «положительный полюс», что обозначает место большего потенциала); – («минус» или отрицательный полюс, представляющий собой место сосредоточения меньшего потенциала). Также электрод подключаемого к положительному зажиму устройства, то есть положительный электрод, называется «анодом», подключаемый к отрицательному зажиму – «катодом».

Параметры постоянного тока

Как и всякая физическая величина, постоянный электрический ток характеризуется целым рядом параметров, имеющих непосредственное к нему отношение и отношение к взаимосвязанным с ним величинам.

Величина постоянного тока (сила тока)

Прежде чем говорить о силе тока, определимся с таким понятием, как электрический заряд, выражающий способность тел участвовать в электромагнитных явлениях типа создания электромагнитного поля и электромагнитного взаимодействия.

Впервые это понятие было введено в конце XVIII века французским учёным Шарлем Кулоном, сформулировавшим тогда же свой знаменитый закон о силе взаимодействия между точечными зарядами в зависимости от разделяющего их расстояния. В честь него единица измерения электрического заряда (количества электричества) стала называться «Кулон» (Кл).

Только опираясь на понятие электрического заряда, можно говорить о величине (силе) тока, формула расчёта которого (для равномерного движения зарядов) выглядит следующим образом:

Что можно выразить следующими словами: сила тока прямо пропорциональна количеству зарядов, проходящих через поперечное сечение проводника за единицу времени. Здесь:

  • I – ток, измеряемый в амперах (Андре Мари-Ампер – ещё один французский физик, внёсший значительный вклад в теорию электромагнетизма).
  • Q – электрический заряд, измеряемый в кулонах или ампер-часах (А·ч). 1 А·ч = 3600 Кл.
  • t – единица времени.

Для измерения силы тока используются амперметры, включаемые последовательно с источником электрического тока.

Плотность тока

Ещё одно важное понятие, необходимое в целях правильного выбора токопроводящего сечения линий электропередачи. Плотность тока это:

Где: I – сила тока в амперах. S – площадь поперечного сечения в м 2 . J – плотность тока в А/м 2 или А/мм 2 .

Электродвижущая сила (ЭДС)

Электродвижущая сила (ЭДС) – это величина, характеризующая работу первичного источника электрической энергии по созданию постоянного электрического тока.

E – электродвижущая сила (ЭДС), измеряемая в вольтах (Алессандро Вольта – известнейший итальянский физик). A – работа, измеряемая в джоулях (Джеймс Прескотт Джоуль – английский физик, внёсший значительный вклад в развитие термодинамики).

Электрическое напряжение

Электрическое напряжение – это величина, показывающая работу эффективного электрического поля, затраченную на перенос единичного пробного заряда из точки A в точку B.

UAB = φA – φB + EAB

Читайте также:
Декоративная краска для стен в квартире

φA – φB – разница потенциалов между точками A и B. EAB – электродвижущая сила, возникающая на искомом участке цепи постоянного тока. Здесь все величины измеряются в вольтах. Для определения величины напряжения применяются вольтметры, подключаемые параллельно участку измерения напряжения.

Применение постоянного тока

Оказывается, постоянный ток окружает нас со всех сторон, хотя мы этого подчас не замечаем. Стоит только взглянуть на электронные часы, фонари, персональные компьютеры, средства связи, разнообразные игрушки, электроинструмент с аккумуляторами, всевозможные медицинские приборы, как сразу станет видно, насколько наша жизнь наполнена химическими источниками электрического тока.

Но это далеко не всё. Постоянный электрический ток находит достаточно широкое применение:

  • в электронике, использующей его для питания своих схем повсеместно;
  • в гальванизации и гальванопластике для нанесения декоративных или защитных покрытий;
  • в электролизе при получении с его помощью из расплавов или растворов солей меди, алюминия, магния, никеля, хлора, натрия и калия;
  • при проведении сварочных работ методами электродуговой и электрогазовой сварки;
  • при преобразовании переменного тока с помощью инверторов в ток постоянный;
  • для питания локальных электрических сетей средств автотранспорта;
  • на целом ряде судов, где находит применение электрическая передача с двигателя внутреннего сгорания на движитель;
  • в медицинских и научных целях.

Постоянный ток на транспорте

Благодаря удачной вариабельности электродвигателей постоянного тока с последовательным возбуждением, заключающейся в получении повышенного момента вращения при малых оборотах или, наоборот, стабильной скорости при малых оборотах электродвигателя, системы постоянного тока нашли широкое применение на транспорте. С помощью изменения питающего напряжения или последовательного включения реостата можно регулировать число оборотов электродвигателя, задавая тем самым темп и скорость перемещения транспортного средства.

Вот почему двигатели такого типа используются в силовых установках тепловозов, трамваев, троллейбусов, электровозов, электропоездов и на грузоподъёмных машинах. При этом питающее напряжение трамвайных и троллейбусных линий составляет 550-600 В, а линий метрополитена – 750-900 В.

Линии передачи постоянного тока

Использование высоковольтных линий передач постоянного тока (HVDC) с каждым днём становится всё более и более актуальным. Объясняется это возможностью транспортировки на значительные расстояния огромных объёмов электрической энергии. И это при значительно меньших сетевых потерях, чем в процессе использования ЛЭП переменного тока.

Кроме того, такой способ электроснабжения позволяет избежать процесса синхронизации, доставляющего энергетикам множество проблем и хлопот. Существуют и достаточно интересные варианты передач электроэнергии на короткие расстояния с помощью постоянного тока.

Основным сдерживающим фактором здесь выступает необходимость двойного преобразования тока, что значительно усложняет и резко повышает стоимость изготавливаемых конструкций. При удачном решении данной проблемы всё может кардинальным образом измениться. В настоящее время в эксплуатации находятся ЛЭП постоянного тока: Волгоград-Донбасс, Экибастуз-Центр, вставка Выборг-Финляндия.

Небольшое заключение

Со времён открытия Томасом Эдисоном постоянного электрического тока прошло немало лет. За этот промежуток времени постоянный ток стал незаменимым спутником человека в широчайшем диапазоне сфер деятельности. Кроме того, сейчас у него есть очень заманчивые перспективы применения (при замене электроустановок, работающих на переменном токе, на электроустановки, функционирующие на постоянном токе) в плане:

  • повышения устойчивости, надёжности, эффективности, экономичности (снижение потерь) систем электроснабжения при транспортировке электроэнергии по линиям электропередач;
  • обеспечение более высокой степени электробезопасности за счёт увеличения порога напряжения до 8В (для переменного тока эта величина составляет 2В);
  • возможности, когда отсутствуют трансформаторы, передавать информационные сигналы для нужд телефонной связи и кабельного телевидения;
  • использование солнечных батарей и светодиодных светильников, работающих на постоянном токе.

Безусловно, всё это требует дополнительных исследований, но зато достигнутые цели открывают новые возможности, которые вполне оправдывают необходимость вложения средств, получив со временем весьма существенную экономию.

Источники постоянного тока

Постоянный ток — это такой ток, который почти (поскольку ничего идеального в мире нет) не изменяется во времени, ни по величине, ни по направлению. Исторически первые источники постоянного тока были исключительно химическими. Сначала они были представлены только гальваническими элементами, а позже появились и аккумуляторы.

Гальванические элементы и аккумуляторы имеют строго определенную полярность, и направление тока в них самопроизвольно не изменяется, поэтому химические источники тока — это принципиально источники постоянного тока.

Гальванический элемент

Пальчиковая батарейка АА — яркий пример современного гальванического элемента. Цилиндрическая щелочная батарейка ( которую любят называть алкалиновой, тогда как слово «alkaline» переводится как «щелочная») содержит внутри раствор гидроксида калия в качестве электролита. На положительном полюсе батарейки находится диоксид марганца, а на отрицательном — цинк в виде порошка.

Когда внешняя цепь батарейки замыкается на нагрузку, на аноде (отрицательном полюсе) происходит химическая реакция окисления цинка, одновременно с этим на катоде (положительном полюсе) идет реакция восстановления оксида марганца четырехвалентного до оксида марганца трехвалентного.

В результате с отрицательного полюса электроны бегут в сторону положительного полюса через внешнюю цепь нагрузки. Так работает источник постоянного тока — гальванический элемент.

Химический процесс в гальваническом элементе не обратим, то есть пытаться заряжать его бесполезно. Напряжение между полюсами новой пальчиковой батарейки 1,5 вольта, что обусловлено потенциалами веществ, участвующих в химической реакции внутри нее.

Аккумулятор

Литий-ионный аккумулятор, в отличие от батарейки, можно после разрядки снова заряжать, поскольку химический процесс в нем обратим. С виду аккумулятор работает как батарейка, то есть тоже дает в цепь нагрузки принципиально только постоянный ток, но емкость у аккумулятора обычно больше чем у батарейки примерно такого же размера.

В ходе разрядки литиевого аккумулятора, химическая реакция на аноде (отрицательном электроде) состоит в отделении лития от углерода и его переходе в состав соли на катоде (положительном электроде). А при зарядке ионы лития вновь переходят к углероду на аноде.

Читайте также:
5 преимуществ ламината

Разность потенциалов между полюсами литий-ионного аккумулятора может доходить до 4,2 вольт. Максимальный ток зависит от площади взаимодействия электродов внутри аккумулятора с электролитом и соответственно друг с другом.

Генератор

В промышленных масштабах постоянный ток получают при помощи генераторов постоянного тока. Как правило, на статоре такой машины расположены неподвижные магниты либо электромагниты, наводящие во вращающихся контурах ЭДС по закону электромагнитной индукции.

Вращающиеся контуры соединены каждый с контактными пластинами щеточно-коллекторного узла, через которые посредством неподвижных щеток и снимается в цепь нагрузки генерируемый ток. Поскольку контуры контактируют с положительной и отрицательной щетками только при прохождении мимо определенных магнитных полюсов статора, ток во внешней цепи получается выпрямленным переменным, то есть пульсирующим постоянным.

Величина тока зависит от сечения проводов, индукции магнитного поля статора и площади статора. Величина напряжения — от скорости вращения ротора генератора и от индукции магнитного поля статора.

Солнечный элемент

Солнечные батареи также дают постоянный ток. Фотоны солнечного света попадая на фотоэлемент вызывают движение положительно заряженных дырок и отрицательно заряженных электронов через p-n-переход, и во внешней цепи получается таким образом постоянный ток.

Чем больше совокупная площадь фотоэлементов — тем больше электронов и дырок участвуют в образовании тока, тем больший ток можно получить от солнечной батареи. Генерируемое напряжение солнечной батареи зависит от интенсивности солнечного света и от количества соединенных последовательно фотоэлементов, входящих в конструкцию солнечной батареи.

Трансформатор с выпрямителем

Раньше в электронной аппаратуре для получения постоянного тока, при питании от бытовой сети переменного тока, сплошь и рядом использовались блоки питания с трансформаторами на железе. Переменное сетевое напряжение понижалось при помощи трансформатора, а затем выпрямлялось при помощи лампового или диодного выпрямителя.

После выпрямителя в такой схеме всегда стоит фильтр, состоящий как минимум из конденсатора, а в лучшем случае — из конденсатора и дросселя, да еще и транзисторного стабилизатора напряжения, особенно если источник тока должен быть регулируемым.

Напряжение на выходе такого блока питания зависит от количества витков вторичной обмотки трансформатора, а максимальная величина тока — от номинальной мощности трансформатора.

Импульсный блок питания

Сегодня в радиоэлектронной аппаратуре для получения постоянного тока почти не используют блоки питания с низкочастотными трансформаторами на железе, на замену им пришли импульсные блоки питания. В них выпрямленное сетевое напряжение сначала понижается при помощи высокочастотного трансформатора и транзисторных ключей, а затем выпрямляется. Ток направляется через фильтр в конденсатор фильтра.

Конструкция импульсного блока питания получается гораздо меньше размером, чем с трансформатором на железе. Но шумов в выходном токе больше. Поэтому особое внимание при конструировании импульсных блоков питания уделяют фильтрации тока на выходе к нагрузке.

Напряжение на выходе импульсного блока питания зависит от устройства электронной схемы, а максимальный ток — от размера высокочастотного трансформатора и качества находящихся на схеме радиоэлектронных компонентов.

Конденсатор и ионистор

Источником постоянного электрического тока можно назвать в определенном смысле электрический конденсатор. Конденсатор накапливает электрическую энергию в форме постоянного электрического поля между своими обкладками, а затем может отдавать эту энергию в форме постоянного тока или импульсного разряда. И то и другое по сути — постоянный ток, отличающийся лишь длительностью проявления.

Но электролитические конденсаторы сегодня выпускаются на огромные емкости в тысячи и более микрофарад. Особая разновидность конденсатора — ионистор (суперконденсатор) — он занимает промежуточное место между аккумулятором и конденсатором.

Химические процессы в ионисторе протекают практически с такой же скоростью как в конденсаторе, но в отличие от аккумулятора, ионистор обладает меньшим внутренним сопротивлением, что позволяет получать от ионисторов большие постоянные токи на протяжении более длительного времени. Чем больше емкость конденсатора — тем больший по величине и более продолжительный ток можно получить с его помощью.

Чем отличаются и где используются постоянный и переменный ток

В современном мире каждый человек с детства сталкивается с электричеством. Первые упоминания об этом природном явлении относятся к временам философов Аристотеля и Фалеса, которые были заинтригованы удивительными и загадочными свойствами электрического тока. Но лишь в 17 веке великие ученые умы начали череду открытий, касающихся электрической энергии, продолжающихся по сей день.

Открытие электрического тока и создание Майклом Фарадеем в 1831 г. первого в мире генератора кардинально изменило жизнь человека. Мы привыкли, что нашу жизнь облегчают приборы, работающие с использованием электрической энергии, но до сих пор у большинства людей нет понимания этого важного явления. Для начала, чтобы понять основные принципы электричества, необходимо изучить два основных определения: электрический ток и напряжение.

Что такое электрический ток и напряжение

Электрический ток – это упорядоченное движение заряженных частиц (носителей электрического заряда). Носителями электрического тока являются электроны (в металлах и газах), катионы и анионы (в электролитах), дырки при электронно-дырочной проводимости. Данное явление проявляется созданием магнитного поля, изменением химического состава или нагреванием проводников. Основными характеристиками тока являются:

  • сила тока, определяемая по закону Ома и измеряемая в Амперах (А), в формулах обозначается буквой I;
  • мощность, согласно закону Джоуля-Ленца, измеряемая в ваттах (Вт), обозначается буквой P;
  • частота, измеряемая в герцах (Гц).

Электрический ток, как носитель энергии используют для получения механической энергии с помощью электродвигателей, для получения тепловой энергии в отопительных приборах, электросварке и нагревателях, возбуждения электромагнитных волн различной частоты, создания магнитного поля в электромагнитах и для получения световой энергии в осветительных приборах и различного рода лампах.

Читайте также:
Итальянские двери для стильного интерьера: элитная классика в белом исполнении, современные классические межкомнатные модели Italon из Италии и другие

Напряжение – это работа, совершаемая электрическим полем для перемещения заряда в 1 кулон (Кл) из одной точки проводника в другую. Исходя из данного определения, все-таки сложно осознать, что же такое напряжение.

Чтобы заряженные частицы перемещались от одного полюса к другому, необходимо создать между этими полюсами разность потенциалов (именно она и именуется напряжением). Единицей измерения напряжения является вольт (В).

Для окончательного понимания определения электрического тока и напряжения, можно привести интересную аналогию: представьте, что электрический заряд — это вода, тогда давление воды в столбе – это и есть напряжение, а скорость потока воды в трубе – это сила электрического тока. Чем выше напряжение, тем больше сила электрического тока.

Что такое переменный ток

Если менять полярность потенциалов, то направление протекания электрического тока меняется. Именно такой ток и называется переменным. Количество изменений направления за определенный промежуток времени называется частотой и измеряется, как уже было сказано выше, в герцах (Гц). Например, в стандартной электрической сети в нашей стране частота равна 50 Гц, то есть направление движения тока за секунду меняется 50 раз.

Что такое постоянный ток

Когда упорядоченное движение заряженных частиц имеет всегда только одно направление, то такой ток именуется постоянным. Постоянный ток возникает в сети постоянного напряжения, когда полярность зарядов с одной и другой стороны постоянна во времени. Его очень часто используют в различных электронных устройствах и технике, когда не требуется передача энергии на большое расстояние.

Источники электрического тока

Источником электрического тока обычно называется прибор или устройство, с помощью которого в цепи можно создать электрический ток. Такие устройства могут создавать как переменный ток, так и постоянный. По способу создания электрического тока они подразделяются на механические, световые, тепловые и химические.

Механические источники электрического тока преобразуют механическую энергию в электрическую. Таким оборудованием являются различного рода генераторы, которые за счет вращения электромагнита вокруг катушки асинхронных двигателей вырабатывают переменный электрический ток.

Световые источники преобразуют энергию фотонов (энергию света) в электрическую энергию. В них используется свойство полупроводников при воздействии на них светового потока выдавать напряжение. К такому оборудованию можно отнести солнечные батареи.

Тепловые – преобразуют энергию тепла в электричество за счет разности температур двух пар контактирующих полупроводников – термопар. Величина тока в таких устройствах напрямую связана с разностью температур: чем больше разница – тем больше сила тока. Такие источники применяются, например, в геотермальных электростанциях.

Химический источник тока производит электричество в результате химических реакций. Например, к таким устройствам можно отнести различного рода гальванические батареи и аккумуляторы. Источники тока на основе гальванических элементов обычно применяются в автономных устройствах, автомобилях, технике и являются источниками постоянного тока.

Преобразование переменного тока в постоянный

Электрические устройства в мире используют постоянный и переменный ток. Поэтому возникает потребность в том, чтобы преобразовывать один ток в другой или наоборот.

Из переменного тока можно получить постоянный ток с помощью диодного моста или, как его еще называют, «выпрямителя». Основной частью выпрямителя является полупроводниковый диод, который проводит электрический ток только в одном направлении. После этого диода ток не изменяет своего направления, но появляются пульсации, которые устраняют при помощи конденсаторов и других фильтров. Выпрямители бывают в механическом, электровакуумном или полупроводниковом исполнении.

В зависимости от качества изготовления такого устройства, пульсации тока на выходе будут иметь разное значение, как правило, чем дороже и качественнее сделан прибор – тем меньше пульсаций и чище ток. Примером таких устройств являются блоки питания различных приборов и зарядные устройства, выпрямители электросиловых установок в различных видах транспорта, сварочные аппараты постоянного тока и другие.

Для того, чтобы преобразовать постоянный ток в переменный используются инверторы. Такие приборы генерируют переменное напряжение с синусоидой. Существует несколько видов таких аппаратов: инверторы с электродвигателями, релейные и электронные. Все они отличаются друг от друга по качеству выдаваемого переменного тока, стоимости и размерам. В качестве примера такого устройства можно привести блоки бесперебойного питания, инверторы в автомобилях или, например, в солнечных электростанциях.

Где используется и в чём преимущества переменного и постоянного тока

Для выполнения различных задач может потребоваться использование как переменного тока, так и постоянного. У каждого вида тока есть свои недостатки и достоинства.

Переменный ток чаще всего используется тогда, когда присутствует необходимость передачи тока на большие расстояния. Такой ток передавать целесообразнее с точки зрения возможных потерь и стоимости оборудования. Именно поэтому в большинстве электроприборов и механизмов используется только этот вид тока.

Жилые дома и предприятия, инфраструктурные и транспортные объекты находятся на расстоянии от электростанций, поэтому все электрические сети — переменного тока. Такие сети питают все бытовые приборы, аппаратуру на производствах, локомотивы поездов. Приборов, работающих на переменном токе невероятное количество и намного проще описать те устройства, в которых используется постоянный ток.

Постоянный ток используется в автономных системах, таких, например, как бортовые системы автомобилей, летательных аппаратов, морских судов или электропоездов. Он широко используется в питании микросхем различной электроники, в средствах связи и прочей технике, где требуется минимизировать количество помех и пульсаций или исключить их полностью. В ряде случае, такой ток используется в электросварочных работах с помощью инверторов. Существуют даже железнодорожные локомотивы, которые работают от систем постоянного тока. В медицине такой ток используется для введения лекарств в организм с помощью электрофореза, а в научных целях для разделения различных веществ (электрофорез белков и прочее).

Читайте также:
Изготовление угловой тумбы для кухонной мойки (чертежи)

Обозначения на электроприборах и схемах

Часто возникает потребность в том, чтобы определить на каком токе работает устройство. Ведь подключение устройства, работающего на постоянном токе в электрическую сеть переменного тока, неминуемо приведет к неприятным последствиям: повреждению прибора, возгоранию, электрическому удару. Для этого в мире существуют общепринятые условные обозначения для таких систем и даже цветовая маркировка проводов.

Условно, на электроприборах, работающих на постоянном токе указывается одна черта, две сплошных черты или сплошная черта вместе с пунктирной, расположенные друг под другом. Также такой ток маркируется обозначением латинскими буквами DC. Электрическая изоляция проводов в системах постоянного тока для положительного провода окрашена в красный цвет, отрицательного в синий или черный цвет.

На электрических аппаратах и машинах переменный ток обозначается английской аббревиатурой AC или волнистой линией. На схемах и в описании устройств его также обозначают двумя линиями: сплошной и волнистой, расположенных друг под другом. Проводники в большинстве случаев обозначаются следующим образом: фаза – коричневым или черным цветом, ноль – синим, а заземление желто-зеленым.

Почему переменный ток используется чаще

Выше мы уже говорили о том, почему переменный ток в настоящее время используется чаще, чем постоянный. И все же, давайте рассмотрим этот вопрос подробнее.

Споры о том, какой же ток в использовании лучше идет со времен открытий в области электричества. Существует даже такое понятие, как «война токов» — противоборство Томаса Эдисона и Николы Теслы за использование одного из видов тока. Борьба между последователями этих великих ученых просуществовала вплоть до 2007 года, когда город Нью-Йорк перевели на переменный ток с постоянного.

Самая главная причина, по которой переменный ток используется чаще – это возможность передавать его на большие расстояния с минимальными потерями . Чем больше расстояние между источником тока и конечным потребителем, тем больше сопротивление проводов и тепловые потери на их нагрев.

Для того, чтобы получить максимальную мощность необходимо увеличивать либо толщину проводов (и уменьшать тем самым сопротивление), либо увеличивать напряжение.

В системах переменного тока можно увеличивать напряжение при минимальной толщине проводов тем самым сокращая стоимость электрических линий. Для систем с постоянным током доступных и эффективных способов увеличивать напряжение не существует и поэтому для таких сетей необходимо либо увеличивать толщину проводников, либо строить большое количество мелких электростанций. Оба этих способа являются дорогостоящими и существенно увеличивают стоимость электроэнергии в сравнении с сетями переменного тока.

При помощи электротрансформаторов напряжение переменного тока эффективно (с КПД до 99%) можно изменять в любую сторону от минимальных до максимальных значений, что тоже является одним из важных преимуществ сетей переменного тока. Применение трехфазной системы переменного тока еще больше увеличивает эффективность, а механизмы, например, двигатели, которые работают в электросетях переменного тока намного меньше, дешевле и проще в обслуживании, чем двигатели постоянного тока.

Исходя из всего вышесказанного можно сделать вывод о том, что использование переменного тока выгодно в больших сетях и при передаче электрической энергии на большие расстояния, а для точной и эффективной работы электронных приборов и для автономных устройств целесообразно использовать постоянный ток.

Что такое короткое замыкание по-простому?

Какие существуют виды источников электрического тока?

Способы вычисления потребления электроэнергии бытовыми приборами

Как пользоваться мультиметром – измерение напряжения, силы тока и сопротивления

Что такое фазное и линейное напряжение?

Сравнение основных параметров светодиодных ламп и ламп накаливания, таблица соответствия мощности и светового потока

Источник тока

Открытие электричества привело к появлению такого понятия, как источник тока. Им может быть любой двухполюсник, в котором значение напряжения на выводах не обусловлено силой тока, проходящего через него. Иными словами, это устройство, совершающее работу, в результате которой происходит разделение отрицательно и положительно заряженных частиц. Они накапливаются на клеммах двухполюсника и создают разность потенциалов между ними. Источник может преобразовать в электрическую энергию другие виды энергии. При любом сопротивлении нагрузки его ток не меняется.

Электрический ток

Направленное движение электронов называется электрическим током. Сами электроны – это отрицательно заряженные частицы. Они присутствуют в металлах и двигаются беспорядочно. Если металлический проводник присоединить к выводам двухполюсника (источника тока), то электроны начнут перемещаться в строгой направленности. Протекая от плюса к минусу, они образуют процесс, называемый электрическим током.

Источники и признаки постоянного тока

Движение зарядов в электрической цепи обеспечивают источники тока. Для постоянного тока источниками могут быть:

  • батарейки или аккумуляторы;
  • генераторы постоянного тока;
  • преобразователи и выпрямители импульсов переменного тока.

Гальванические элементы вырабатывают постоянный ток в результате электрохимической реакции.

Машины постоянного тока производят его с помощью электромагнитной индукции и выпрямляют в обмотках коллектора.

Схемы преобразователей и полупроводниковые выпрямители на транзисторах или высоковольтных диодах так же могут выдавать ток, характеристики которого не меняются во времени. Преобразователи могут регулировать частоту и напряжение, оставляя неизменным ток.

По каким признакам определяют наличие тока, если нет измерительных приборов? Это можно выяснить по его воздействию на проводник. Такие действия можно разделить на три вида:

  • магнитные;
  • химические;
  • тепловые.

Если через проводник, из которого выполнена обмотка катушки, пропустить электроток, то катушка станет притягивать металлические элементы. На этом принципе работают большие электромагниты, задействованные при погрузке металла в морских портах.

Химическое действие, по которому можно судить о наличии тока, – это процесс электролиза. При нём на электродах, подключенных к источнику, начинает оседать вещество. Эти процессы используются в гальваностегии или гальванопластики.

Читайте также:
Как выбрать распределительную гребенку отопления для котла

При подключении к двухполюснику проводника с высоким сопротивлением электрическому току он начинает нагреваться и отдавать тепло. Например, чтобы электроны двигались через нихромовую спираль, совершается работа с выделением тепла. Это свойство проводника используется при изготовлении нагревательных приборов.

Важно! Источник тока отличается от источника напряжения тем, что первый отдаёт одинаковый ток, независимо от сопротивления нагрузки, второй –снабжает потребителя напряжением, которое не изменяется при любой нагрузке. Квартирная розетка 220 В – источник напряжения, сварочный аппарат – токовый ресурс.

Источники электрического тока, изобретение электромашины

Выработка электричества с помощью генераторов – основное направление в производстве электроэнергии. Механические источники поделились на два вида генераторов:

  • машины, вырабатывающие постоянный ток;
  • генераторы, производящие переменный ток.

Источники переменного тока и постоянного – это генераторы, которые превращают механическую энергию вращения в электрическую. Заявление Эмиля Ленца, русского учёного, в 1833 году послужило толчком для работ над созданием генераторов. Ленц объявил о возможной взаимности магнитоэлектрических явлений. Это означало, что двигатели постоянного и переменного тока могли не только вращаться при подаче напряжения соответствующей природы, но и при вращении начинать вырабатывать это напряжение.

Принцип действия

Переменный – это ток, у которого величина и направление меняются во временном диапазоне. Основным принципом действия генераторов переменного тока является закон электромагнитной индукции – возникновение движения электронов в проводнике во время прохождения магнитного потока через его замкнутый контур.

Действие генераторов постоянного тока основано на законе Фарадея и проявлении ЭДС.

Когда к проводнику, имеющему внутри вращающийся постоянный магнит, подключить нагрузку, то по ней потечёт переменный ток. Это происходит из-за смены мест полюсов магнита. Для получения постоянного тока нужно эту нагрузку подключать с такой скоростью, с какой вращается магнит. Для этого предназначен в нём коллектор, который закрепляется на роторе и вращается с той же частотой. Постоянное напряжение с коллектора снимают графитные щётки. ЭДС падает до нуля, когда пластины коллектора переключаются, но не изменяет своей полярности, так как успевает подключиться к другому проводнику.

Работа источника тока

Перемещая электрические заряды по участку цепи, электрический ток выполняет работу. Она складывается из работы кулоновских сил и работы сторонних сил:

Работа источникаэто работа сторонних сил по переносу электрических зарядов вдоль проводника в течение времени:

Аист = Астор = ε * I * t,

где:

  • ε – ЭДС (В);
  • I – ток (А);
  • t – время (с).

Работа электротока определяет степень превращения электроэнергии в её другие формы.

Химический источник тока

Химические источники питания постоянного тока – это семейство устройств и аппаратов, которые выдают напряжение на своих клеммах в результате внутренних химических процессов окисления или гальванизации. Их работа основана на реакциях химических веществ, которые, вступая во взаимодействие между собой, производят постоянный электроток.

К сведению. Процессы, протекающие в химических источниках (ХИТ), идут без тепловых или механических воздействий. Это выделяет их в особый ряд среди устройств, генерирующих напряжения постоянной полярности.

Некоторые виды химических источников тока

Термины и определения подробно описаны в ГОСТ Р МЭК 60050-482-2011, введённом в действие 01.07.2012 года. В нём сокращённо обозначены химические источники тока – ХИТ.

Разделение по видам ХИТ производят в следующей градации:

  • первичные;
  • топливные;
  • аккумуляторы.

Это различие проведено по способу действия источника.

Элементы однократного применения – первичные источники. В них заложен конечный запас реагентов, которые вступят в реакцию и перестанут вырабатывать энергию по окончании процесса. Это различные батарейки типа АА.

Топливные ХИТ способны работать постоянно, но требуют поступления новой дозы веществ и удаления отработанных продуктов. По сути, это гальваническая ячейка, куда подводятся раздельно топливо и окислитель, они вступают в реакцию на двух электродах. В электролите растворяется топливо, и происходит катодное окисление. Это практически прецизионный лабораторный процесс.

Вторичные элементы, которые имеют возможность использоваться много раз, после подзаряда или перезаряда называются аккумуляторами. Если к таким устройствам подключить ток, то они снова регенерируются и аккумулируют энергию. Они нашли самое широкое применение в питании мобильных устройств и механизмов.

Электрические аккумуляторы

Это источник постоянного тока многоразового использования, который действует не постоянно, а до следующего заряда. Они по своей химической природе подразделяются на типы:

  • свинцово-кислотные;
  • литий-ионные (литиевые);
  • никель-кадмиевые;
  • никелево-железные.

Свинцово-кислотные модели применяются в автомобилях, источниках бесперебойного питания, транспорте, промышленности, в отрасли связи и телекоммуникаций.

Литий-ионные батареи нашли широкое применение в мобильной связи, электроинструментах, системах телекоммуникаций, а также автономном и аварийном электроснабжении. Вот только небольшой перечень спектра их составов:

  • литий-титанатовый;
  • тионилхлоридный;
  • литий-кобальтовый;
  • литий-марганцевый;
  • литий-фосфат железный;
  • литий-полимерный;
  • литий-диоксид серный;
  • литий-диоксид марганцевый.

Интересно. Никель-кадмиевые щелочные аккумуляторы применяются в авиации, речном и морском судоходстве, в электрокарах.

Никелево-железные щелочные – очень надёжный тип источника. Пагубные для свинцово-кислотных батарей глубокие разряды, частые недозаряды не выводят их из строя. Они используются в тяговых транспортных цепях, в цепях резервного питания.

Гальванические элементы

Это ряд химических источников тока, которые называются батарейками. Напряжение батареек зависит от количества единиц, в неё входящих, и типа металлов, которые в ней применяются. Напряжение может быть в пределах от 1,5 до 4,5 вольт. В металлический цилиндр вставлены сетки из металлов, на которые с помощью напыления наносится окислитель. Электролитом выступает кислота либо соли калия или натрия. По мере прекращения реакции ток в батарее снижается. Дальнейшему восстановлению батарея не подлежит.

Читайте также:
Алоказия полли уход в домашних условиях

Топливные элементы

Этот класс источника тока можно отнести к разряду батарей, которые производят ток из топлива с помощью электрохимической реакции. Есть в нём электролит, анод и катод. Только такие ХИТ не накапливают энергии, им не нужен заряд. Всё, что необходимо для их работы, – воздух и топливо. Пока то и другое есть, электроэнергия вырабатывается. Без целого блока вспомогательных систем: подачи топлива, удаления отходов и системы контроля, процесс тоже невозможен.

Идеальный источник тока

Если ток, проходящий через двухполюсник и снимаемый с его контактов, не изменяется от величины напряжения на этих контактах, то это идеальный источник тока. Закон Ома, утверждающий, что сила тока на участке цепи находится в прямой зависимости от напряжения и обратно пропорциональна сопротивлению, ссылается на такой эталон. Формула:

I = U/R, где:

  • I – ток, А;
  • U – напряжение, В;
  • R – сопротивление, Ом.

В этом случае подразумевается, что внутреннее сопротивление источника близко или равно бесконечности. Это значит, что внешние параметры цепи, изменяющие напряжение на выходе двухполюсника, не изменяют ток.

Внимание! Мощность на выводах источника будет повышаться с увеличением сопротивления нагрузки, при неизменном токе это даёт увеличение мощности P = U*I. В этом случае можно говорить об идеальном источнике мощности.

Источник любого типа далёк от идеального генератора. Правильно подобранный и неповреждённый источник тока прослужит долго. Главное, чтобы эксплуатация проходила в рекомендуемом режиме. Так как большинство изделий связано с химическими процессами, то хранение и утилизация этой продукции выполняются по экологическим нормам и правилам.

Видео

Виды источников тока

Источники тока используют для длительного поддержания электрического поля и получения электрического тока. Все они могут иметь различные принципы работы, внешний вид, конструкцию и размеры.

Источники тока – это устройства:
— способные создавать и поддерживать электрический ток;
— в них сторонние силы совершают работу по перемещению зарядов против электрических сил;
— а механическая, внутренняя, химическая или иная энергия превращается в электрическую.

Какие виды источников тока существуют

Энергия не может возникать из ничего. Об этом говорит закон сохранения энергии. Во всех без исключения источниках, электроэнергия создается за счет других ее видов.

В зависимости от того, какая именно энергия превращается в электрическую, выделяют такие виды (рис. 1) источников:

  1. механические – генераторы,
  2. тепловые – термопары, термогенераторы,
  3. световые (фотоэлектрические) – солнечные батареи и фотоэлементы,
  4. химические – гальванические элементы и аккумуляторы.

Рассмотрим подробнее эти виды.

Механические источники

Электрофорная машина – один из механических источников тока (рис. 2), применяемых более столетия.

С помощью этого устройства механическая энергия вращающихся дисков преобразовывается в электрическую энергию. При этом, происходит разделение положительных и отрицательных зарядов.

Превращение энергии вращения (механической) в энергию электрического тока происходит в различных генераторах.

В конструкции любого из них присутствуют элементы, создающие магнитное поле в пространстве вокруг проводника.

Например, электрический генератор для велосипеда (рис. 3), включает в себя кольцевой магнит и проволочную обмотку, расположенную рядом с ним.

Во время движения велосипеда магнит, расположенный внутри, вращается. Изменяющееся магнитное поле заставляет двигаться электроны по обмотке. Если к ее выводам подключить лампочку, она загорится, так как по цепи потечет электрический ток.

Мускульной силы человека хватает, чтобы зажечь лампочку для карманного фонаря. Однако, ее недостаточно, чтобы вырабатывать больше электроэнергии. Например, чтобы нагреть утюг и одновременно с этим зажечь несколько бытовых ламп накаливания.

Поэтому, для бытовых нужд и нужд промышленности в электрическую энергию превращают энергию сгорающего топлива, а не энергию сокращения мускул.

На тепловых, атомных и гидроэлектростанциях установлены мощные генераторы. Они могут отдавать потребителям токи в тысячи Ампер. А масса некоторых достигает десятков тонн.

На таких электростанциях превращение энергии происходит в несколько этапов. Сначала энергия горящего топлива превращается во внутреннюю энергию горячей воды, а затем — в механическую и, в конечном итоге, в электрическую.

Существуют, так же, устройства, предназначенные для бытового использования. Например, небольшие генераторы, массой в несколько килограммов, оснащенные бензиновым мотором (рис. 4).

Они, так же, преобразуют внутреннюю энергию топлива в механическую энергию вращения вала двигателя, который соединяется с генератором. А затем энергия вращения с помощью генератора превращается в электрическую энергию.

Тепловые источники

К тепловым относят различные термоэлементы. Термоэлемент — это прибор в котором, тепловая энергия, получаемая от нагревателя, превращается сначала во внутреннюю энергию вещества, а затем — в электрическую энергию.

Один из таких элементов называют термопарой (рис. 5). Термопара состоит из двух различных металлических проволок, спаянных вместе. Если нагреть место их соприкосновения, то на свободных концах проволочек можно обнаружить электрическое напряжение (ссылка).

Если свободные концы термопары присоединить к потребителю тока, то под действием тепловой энергии по замкнутой цепи побегут электроны, то есть, возникнет электрический ток.

Таким образом, эта незамысловатая конструкция преобразовывает внутреннюю энергию нагреваемых металлов в электрическую энергию.

Фотоэлектрические источники

Атомы некоторых веществ под действием видимого света способны терять электроны. Например, селен, кремний, оксиды цинка, меди, висмута. На основе этих и, некоторых других веществ создают источники, генерирующие электрический ток под действием (рис. 6) света.

Эти источники используют фотоэлектрический эффект (сокращенно — фотоэффект) (ссылка). В них энергия света преобразуется в электрическую.

Существует два вида фотоэффекта – внутренний, который используется в полупроводниках (ссылка) и внешний, используемый в вакуумных фотоэлементах на основе различных металлов.

Вакуумные фотоэлементы

В вакуумном фотоэлементе свет попадает на пластинку металла и выбивает электроны с ее поверхности. Такую пластинку называют катодом.

Читайте также:
Балконные двери (68 фото): деревянные и стеклянные модели различной ширины с окном, стандартные размеры проема, как утеплить дверь на французский балкон

Выбитые электроны улавливаются другим электродом. Его называют анодом и обычно выполняют в виде металлической сетки.

Оба электрода находятся в стеклянном баллоне из которого удалили воздух. Дело в том, что молекулы воздуха могли бы помешать движению электронов, вылетевших из пластинки. Чтобы этого не происходило, воздух из баллона откачивают (рис. 7).

Таким образом, под воздействием света между катодом и анодом в вакууме возникает поток заряженных частиц. Они движутся направлено от катода к аноду. Значит, в фотоэлементе под действием света возникает электрический ток. Так световая энергия переходит в электрическую.

Солнечные батареи

Еще одним источником тока, в котором ток возникает за счет световой энергии, являются, так называемые, солнечные батареи. Их изготавливают из полупроводниковых пластин (рис. 8).

Падающий свет из полупроводника электроны не выбивает. А вызывает переход электронов в такое состояние, в котором у них появляется дополнительная энергия и они могут свободно передвигаться по полупроводнику, создавая электрический ток.

Химические источники

Если опустить два кусочка различных металлов (например, железа и меди) в емкость с проводящей жидкостью, можно получить химический источник тока.

В качестве проводящей жидкости можно использовать, например, лимонный сок. Воткнув в лимон два гвоздика из различных металлов (рис. 9) и подключив к ним гальванометр, можно обнаружить, что через гальванометр потечет электрический ток.

Такую конструкцию можно считать простейшим химическим источником тока. Гвоздики в нем — это электроды, а лимонная кислота – электролит.

Примечания:

  1. Проводящие жидкости называют электролитами.
  2. Существует, так называемый ряд электрохимических напряженый металлов. Наибольшее напряжение дают источники, построенные с применением металлов, расположенных в различных концах данного ряда.

Самым первым химических источником тока был Вольтов столб.

Алессандро Вольта и его первый гальванический элемент

Дело в том, что до исследований, проведенных А. Вольта, способ получить электрический ток был известен. Однако, эксперименты с электричеством, проводимые в лабораториях другими учеными, создавали ток всего на доли секунды. Источников, способных создавать ток, длившийся хотя бы единицы секунд, не существовало.

В 1800 году Алессандро Вольта изобрел первый прибор, создававший электрический ток продолжительное время. Этот прибор в честь создателя называют Вольтовым столбом.

Ученый определил, что для получения гальванического (электрического) эффекта нужны два разных метала и проводящая жидкость.

Он длительное время потратил на эксперименты, использовал различные металлы и исследовал их свойства.

В процессе работы Вольта сделал вертикальный столбик, укладывая поочередно медные монеты и цинковые пластинки. Между металлами он укладывал кожаные кружочки, вымоченные в рассоле (рис. 10).

Так он создал первую в мире электрическую батарею. Принцип ее работы — превращение химической энергии в электрическую.

Соединяя проволокой два конца собранного столбика, он наблюдал ее нагревание и так определял действие электрического тока.

А чтобы сравнить, больше, или меньше электричества вырабатывал тот или иной столбик, Алессандро пользовался своим языком. Попросту, касался языком выводов созданного им гальванического элемента.

Такой столбик, при высоте, равной половине метра, вырабатывал напряжение, которое было довольно чувствительным.

В марте 1800 года Вольта направил письмо в Лондонское Королевское общество, в котором подробно описал результаты своей работы. А уже в июне оно было признано сенсационным среди ученых того времени.

Наполеон пригласил А. Вольта в Париж и лично присутствовал во время доклада и опыта, демонстрируемого им, а после наградил изобретателя.

Это изобретение сделало автора знаменитым. А благодаря ему в скором времени были совершены другие открытия в области физики.

Какие открытия были совершены благодаря столбу Вольта

В том же году с помощью Вольтова столба вода была разложена на водород и кислород. Это сделали Карлайл и Николсон.

А спустя три года, в 1803 году, Василий Петров создал самый большой в мире столб. Он выдавал напряжение 1700 вольт и содержал более 4000 медных и цинковых кругов. Этот столб помог получить электрическую дугу, которая применяется в электросварке металлов.

После работ Петрова в России стали применять электрические запалы для взрывчатых веществ.

А спустя еще четыре года, в 1807 году, ученым по фамилии Дэви был открыт металлический калий.

Благодаря способности Вольтова столба создавать электрический ток продолжительное время – в течение нескольких часов, началось широкое применение электричества.

По истечении этого времени, на металлах появлялся окисел, препятствующий выработке электрического тока. Нужно было разбирать конструкцию и протирать металлы, избавляя их от этого окисла. А кусочки кожи необходимо было время от времени смачивать рассолом.

Сухой гальванический элемент — батарейка

Значительно позже открытия Вольта, во второй половине 1880-х годов, инженером из Германии Карлом Гасснером был создан сухой гальванический элемент.

Сухим элемент был назван потому, что в качестве электролита в нем использовалась не жидкость, а гелеобразный состав. Такие элементы можно наклонять и даже переворачивать, не боясь пролить электролит. Поэтому, они значительно удобнее жидкостных.

Внутри элемента происходят химические превращения. Эти превращения являются экзотермическими, так как протекают с выделением энергии. Затем внутренняя энергия источника переходит в электрическую.

К примеру, в современном сухом гальваническом элементе (рис. 11), цинк реагирует с хлоридом аммония и при этом получает отрицательный электрический заряд.

Протекая, такие реакции вызывают расходование некоторых частей источника. Например, цинкового электрода.

Из-за этого, в гальванических элементах химические реакции будут необратимыми. Так как, спустя некоторое время, для нормального протекания химических превращений, не будет хватать ресурсов.

Когда скорость химических реакций замедляется, элемент перестает вырабатывать электрический ток. В таких случаях говорят, что элемент разрядился – «села батарейка».

Читайте также:
Изба из бревна: инструкция по монтажу своими руками, венцы, фото и цена

Отработанные гальванические элементы нужно утилизировать. Это позволит использовать вновь некоторые их компоненты, а не загрязнять окружающую среду.

Мировая промышленность выпускает ассортимент стандартизированных элементов питания (рис. 12).

Например, тип АА – пальчиковая батарейка, или ААА – тонкая пальчиковая. Так же, существуют типоразмеры, обозначаемые C D и N. Они имеют ЭДС 1,5 Вольта.

Существуют другие и типы, например, «квадратная» батарейка 3R12, имеющая ЭДС 4,5 Вольт и используемая в карманных фонариках. А, так же, небольшая батарейка вида pp3 с ЭДС 9 Вольт, часто называемая «Крона» или «Корунд».

Гальванические элементы на электрических схемах обозначают специальными значками.

Аккумуляторы и их виды

Устройство аккумулятора внешне напоминает устройство гальванического элемента. Присутствует корпус, в котором находятся две пластины из разных металлов. Одна служит положительным электродом, а другая – отрицательным. Эти пластины помещены в электролит (рис. 13).

Однако, аккумуляторы, в отличие от гальванических элементов, являются многоразовыми устройствами.

Свое название они получили из-за того, что могут аккумулировать, то есть, накапливать электрическую энергию. А затем, отдавать накопленную энергию потребителям.

Химические реакции в аккумуляторах могут протекать в двух направлениях (зарядка — разрядка).

Перед использованием аккумулятор необходимо зарядить. Для этого используют специальные источники тока, которые называют зарядными устройствами. Они пропускают через аккумулятор ток зарядки.

Под воздействием этого тока в аккумуляторе протекают химические реакции, во время которых он накапливает электрические заряды. Один электрод заряжается положительно, а другой – отрицательно.

После, подключив к заряженному аккумулятору потребитель тока, можно использовать накопленную им энергию.

Называть аккумуляторы принято:
— по видам используемых жидкостей — кислотные, щелочные.
— либо по названию металлов, используемых в качестве электродов — свинцовые, железоникелевые, литиевые, и т. п.

В качестве пластин — электродов используют металлы: свинец, железо, литий, титан, кобальт, кадмий, никель, цинк, серебро, алюминий.

Существуют аккумуляторы с гелеобразным электролитом. Такие аккумуляторы можно наклонять в различные стороны, не боясь утечки электролита. Например, литий-полимерные батареи, используемые в мобильных телефонах.

Примечание: Чем больше геометрические размеры электродов источника, тем большую силу тока в полезной нагрузке он может обеспечить. Поэтому, аккумуляторы для автомобилей с ЭДС 12 и 24 Вольта, рассчитанные на большие токи нагрузки, имеют массу от 10 килограммов и большую.

Аналогия между источником тока и водяным насосом

Аналогию с потоком жидкости часто применяют по отношению к электрическому току.

Независимо от того, какой вид энергии превращается в электрическую, принцип работы источника тока чем-то напоминает работу водяного насоса. Различия в том, что источник тока перекачивает заряды, а не жидкость.

Рассмотрим замкнутый контур, состоящий из трубы и водяного насоса, который способен привести в движение воду, так, чтобы она начала циркулировать по трубе (рис. 14а).

Частицы воды будут двигаться и, ток воды будет циркулировать за счет разности давлений, которую будет создавать и поддерживать насос.

На рисунке 14 кружком с треугольником обозначен насос. Направление движения воды отмечено стрелкой. По левую сторону от насоса давление обозначено (large P_<1>), по правую сторону — (large P_<2>) (рис. 14а).

С помощью неравенства

отмечено, что давление слева от насоса будет больше давления справа.

Подобно движению частиц воды, заряды придут в движение и электрический ток будет циркулировать по замкнутой цепи за счет разности потенциалов, которую будет создавать включенная в эту цепь батарейка (рис. 14б) — источник тока.

Сила, перемещающая заряды во внешней цепи, появляется благодаря тому, что источник тока создает разность потенциалов на своих выводах и электрическое поле.

Слева и справа от источника отмечены потенциалы (large varphi_<1>) и (large varphi_<2>). При чем, потенциал слева от источника больше потенциала справа.

Это отмечено неравенством

[large varphi_ <1>> varphi_<2>]

Обратите внимание: источник тока (сторонние силы) заставляет двигаться электроны – отрицательно заряженные частицы, от точки с меньшим потенциалом, в точку с потенциалом большим, а электрический ток направлен в противоположную сторону — от «+» к «-».

Разность потенциалов так же называют электрическим напряжением.

[large Delta varphi = varphi_ <2>— varphi_ <1>= U ]

(large varphi left( B right) ) – потенциал, измеряется в Вольтах;

(large U left( B right) ) – напряжение, измеряется в Вольтах;

Источник тока

Открытие электричества привело к появлению такого понятия, как источник тока. Им может быть любой двухполюсник, в котором значение напряжения на выводах не обусловлено силой тока, проходящего через него. Иными словами, это устройство, совершающее работу, в результате которой происходит разделение отрицательно и положительно заряженных частиц. Они накапливаются на клеммах двухполюсника и создают разность потенциалов между ними. Источник может преобразовать в электрическую энергию другие виды энергии. При любом сопротивлении нагрузки его ток не меняется.

Электрический ток

Направленное движение электронов называется электрическим током. Сами электроны – это отрицательно заряженные частицы. Они присутствуют в металлах и двигаются беспорядочно. Если металлический проводник присоединить к выводам двухполюсника (источника тока), то электроны начнут перемещаться в строгой направленности. Протекая от плюса к минусу, они образуют процесс, называемый электрическим током.

Источники и признаки постоянного тока

Движение зарядов в электрической цепи обеспечивают источники тока. Для постоянного тока источниками могут быть:

  • батарейки или аккумуляторы;
  • генераторы постоянного тока;
  • преобразователи и выпрямители импульсов переменного тока.

Гальванические элементы вырабатывают постоянный ток в результате электрохимической реакции.

Машины постоянного тока производят его с помощью электромагнитной индукции и выпрямляют в обмотках коллектора.

Схемы преобразователей и полупроводниковые выпрямители на транзисторах или высоковольтных диодах так же могут выдавать ток, характеристики которого не меняются во времени. Преобразователи могут регулировать частоту и напряжение, оставляя неизменным ток.

Читайте также:
Как выбрать душевой поддон. Какой поддон лучше для душа?

По каким признакам определяют наличие тока, если нет измерительных приборов? Это можно выяснить по его воздействию на проводник. Такие действия можно разделить на три вида:

  • магнитные;
  • химические;
  • тепловые.

Если через проводник, из которого выполнена обмотка катушки, пропустить электроток, то катушка станет притягивать металлические элементы. На этом принципе работают большие электромагниты, задействованные при погрузке металла в морских портах.

Химическое действие, по которому можно судить о наличии тока, – это процесс электролиза. При нём на электродах, подключенных к источнику, начинает оседать вещество. Эти процессы используются в гальваностегии или гальванопластики.

При подключении к двухполюснику проводника с высоким сопротивлением электрическому току он начинает нагреваться и отдавать тепло. Например, чтобы электроны двигались через нихромовую спираль, совершается работа с выделением тепла. Это свойство проводника используется при изготовлении нагревательных приборов.

Важно! Источник тока отличается от источника напряжения тем, что первый отдаёт одинаковый ток, независимо от сопротивления нагрузки, второй –снабжает потребителя напряжением, которое не изменяется при любой нагрузке. Квартирная розетка 220 В – источник напряжения, сварочный аппарат – токовый ресурс.

Источники электрического тока, изобретение электромашины

Выработка электричества с помощью генераторов – основное направление в производстве электроэнергии. Механические источники поделились на два вида генераторов:

  • машины, вырабатывающие постоянный ток;
  • генераторы, производящие переменный ток.

Источники переменного тока и постоянного – это генераторы, которые превращают механическую энергию вращения в электрическую. Заявление Эмиля Ленца, русского учёного, в 1833 году послужило толчком для работ над созданием генераторов. Ленц объявил о возможной взаимности магнитоэлектрических явлений. Это означало, что двигатели постоянного и переменного тока могли не только вращаться при подаче напряжения соответствующей природы, но и при вращении начинать вырабатывать это напряжение.

Принцип действия

Переменный – это ток, у которого величина и направление меняются во временном диапазоне. Основным принципом действия генераторов переменного тока является закон электромагнитной индукции – возникновение движения электронов в проводнике во время прохождения магнитного потока через его замкнутый контур.

Действие генераторов постоянного тока основано на законе Фарадея и проявлении ЭДС.

Когда к проводнику, имеющему внутри вращающийся постоянный магнит, подключить нагрузку, то по ней потечёт переменный ток. Это происходит из-за смены мест полюсов магнита. Для получения постоянного тока нужно эту нагрузку подключать с такой скоростью, с какой вращается магнит. Для этого предназначен в нём коллектор, который закрепляется на роторе и вращается с той же частотой. Постоянное напряжение с коллектора снимают графитные щётки. ЭДС падает до нуля, когда пластины коллектора переключаются, но не изменяет своей полярности, так как успевает подключиться к другому проводнику.

Работа источника тока

Перемещая электрические заряды по участку цепи, электрический ток выполняет работу. Она складывается из работы кулоновских сил и работы сторонних сил:

Работа источникаэто работа сторонних сил по переносу электрических зарядов вдоль проводника в течение времени:

Аист = Астор = ε * I * t,

где:

  • ε – ЭДС (В);
  • I – ток (А);
  • t – время (с).

Работа электротока определяет степень превращения электроэнергии в её другие формы.

Химический источник тока

Химические источники питания постоянного тока – это семейство устройств и аппаратов, которые выдают напряжение на своих клеммах в результате внутренних химических процессов окисления или гальванизации. Их работа основана на реакциях химических веществ, которые, вступая во взаимодействие между собой, производят постоянный электроток.

К сведению. Процессы, протекающие в химических источниках (ХИТ), идут без тепловых или механических воздействий. Это выделяет их в особый ряд среди устройств, генерирующих напряжения постоянной полярности.

Некоторые виды химических источников тока

Термины и определения подробно описаны в ГОСТ Р МЭК 60050-482-2011, введённом в действие 01.07.2012 года. В нём сокращённо обозначены химические источники тока – ХИТ.

Разделение по видам ХИТ производят в следующей градации:

  • первичные;
  • топливные;
  • аккумуляторы.

Это различие проведено по способу действия источника.

Элементы однократного применения – первичные источники. В них заложен конечный запас реагентов, которые вступят в реакцию и перестанут вырабатывать энергию по окончании процесса. Это различные батарейки типа АА.

Топливные ХИТ способны работать постоянно, но требуют поступления новой дозы веществ и удаления отработанных продуктов. По сути, это гальваническая ячейка, куда подводятся раздельно топливо и окислитель, они вступают в реакцию на двух электродах. В электролите растворяется топливо, и происходит катодное окисление. Это практически прецизионный лабораторный процесс.

Вторичные элементы, которые имеют возможность использоваться много раз, после подзаряда или перезаряда называются аккумуляторами. Если к таким устройствам подключить ток, то они снова регенерируются и аккумулируют энергию. Они нашли самое широкое применение в питании мобильных устройств и механизмов.

Электрические аккумуляторы

Это источник постоянного тока многоразового использования, который действует не постоянно, а до следующего заряда. Они по своей химической природе подразделяются на типы:

  • свинцово-кислотные;
  • литий-ионные (литиевые);
  • никель-кадмиевые;
  • никелево-железные.

Свинцово-кислотные модели применяются в автомобилях, источниках бесперебойного питания, транспорте, промышленности, в отрасли связи и телекоммуникаций.

Литий-ионные батареи нашли широкое применение в мобильной связи, электроинструментах, системах телекоммуникаций, а также автономном и аварийном электроснабжении. Вот только небольшой перечень спектра их составов:

  • литий-титанатовый;
  • тионилхлоридный;
  • литий-кобальтовый;
  • литий-марганцевый;
  • литий-фосфат железный;
  • литий-полимерный;
  • литий-диоксид серный;
  • литий-диоксид марганцевый.

Интересно. Никель-кадмиевые щелочные аккумуляторы применяются в авиации, речном и морском судоходстве, в электрокарах.

Никелево-железные щелочные – очень надёжный тип источника. Пагубные для свинцово-кислотных батарей глубокие разряды, частые недозаряды не выводят их из строя. Они используются в тяговых транспортных цепях, в цепях резервного питания.

Читайте также:
Гидроизоляция свайного фундамента

Гальванические элементы

Это ряд химических источников тока, которые называются батарейками. Напряжение батареек зависит от количества единиц, в неё входящих, и типа металлов, которые в ней применяются. Напряжение может быть в пределах от 1,5 до 4,5 вольт. В металлический цилиндр вставлены сетки из металлов, на которые с помощью напыления наносится окислитель. Электролитом выступает кислота либо соли калия или натрия. По мере прекращения реакции ток в батарее снижается. Дальнейшему восстановлению батарея не подлежит.

Топливные элементы

Этот класс источника тока можно отнести к разряду батарей, которые производят ток из топлива с помощью электрохимической реакции. Есть в нём электролит, анод и катод. Только такие ХИТ не накапливают энергии, им не нужен заряд. Всё, что необходимо для их работы, – воздух и топливо. Пока то и другое есть, электроэнергия вырабатывается. Без целого блока вспомогательных систем: подачи топлива, удаления отходов и системы контроля, процесс тоже невозможен.

Идеальный источник тока

Если ток, проходящий через двухполюсник и снимаемый с его контактов, не изменяется от величины напряжения на этих контактах, то это идеальный источник тока. Закон Ома, утверждающий, что сила тока на участке цепи находится в прямой зависимости от напряжения и обратно пропорциональна сопротивлению, ссылается на такой эталон. Формула:

I = U/R, где:

  • I – ток, А;
  • U – напряжение, В;
  • R – сопротивление, Ом.

В этом случае подразумевается, что внутреннее сопротивление источника близко или равно бесконечности. Это значит, что внешние параметры цепи, изменяющие напряжение на выходе двухполюсника, не изменяют ток.

Внимание! Мощность на выводах источника будет повышаться с увеличением сопротивления нагрузки, при неизменном токе это даёт увеличение мощности P = U*I. В этом случае можно говорить об идеальном источнике мощности.

Источник любого типа далёк от идеального генератора. Правильно подобранный и неповреждённый источник тока прослужит долго. Главное, чтобы эксплуатация проходила в рекомендуемом режиме. Так как большинство изделий связано с химическими процессами, то хранение и утилизация этой продукции выполняются по экологическим нормам и правилам.

Видео

Разработка планов эвакуации

План эвакуации людей при ЧС

План эвакуации – документ, регламентирующий порядок действий сотрудников на объекте при возникновении чрезвычайной ситуации. Компания «Fire Axe» имеет многолетний практический опыт разработки эвакуационной документации, планов эвакуации при пожаре для различных объектов Санкт-Петербурга, а также Ленинградской области, выполняет работы профессионально, качественно, в оптимальные сроки.

Документ является обязательным для объектов с массовым пребыванием людей (более 50 человек), или при наличии 10 рабочих мест. Основные задачи плана эвакуации:

  • регламентирование действий персонала, а также посетителей объекта, при возникновении ЧС;
  • быстрая эвакуация людей из зон возгорания, задымления по безопасным путям эвакуации;
  • указание мест расположения первичных средств пожаротушения, сигнализации, системы пожаротушения;
  • соблюдение противопожарного режима;
  • проведение инструктажа по пожарной безопасности при возникновении ЧС ответственными лицами;
  • помощь сотрудникам пожарной охраны по разведке, локализации, ликвидации очагового возгорания.

Нормативные требования к плану эвакуации

Разработка документации регламентируется законодательной базой: Постановление правительства РФ «О противопожарном режиме» № 390 от 25.04.2012 (с изм. от 23.04.2020 г.), ГОСТ Р 12.2.143–2009 ССБТ и ГОСТ 12.1.004–91 ССБТ.

В соответствии с вышеуказанными документами план разрабатывается в виде схемы, с нанесением путей эвакуации, эвакуационных и аварийных выходов, а также подробной последовательностью действий при возникновении ЧП. Использование схемы, дополнительных знаков и указателей, обеспечивает быструю эвакуацию людей из помещения с возгоранием.

Документ включает следующую информацию:

  • Титульная часть;
  • Адрес объекта, этаж здания, где расположен план;
  • Графическая часть – схема эвакуации;
  • Текстовая часть;
  • Список используемых специальных символов и обозначений и их расшифровка.

В левом нижнем углу содержится информация о компании – разработчике. В правом нижнем углу нанесена маркировка со сведениями о фотолюминесцентной основе материала плана эвакуации.

Разработка и изготовление плана эвакуации

Количество изготавливаемых планов эвакуации зависит от размера объекта и количества выходов. Документ изготавливается на фотолюминесцентной основе, цвет фона белый или светло-желтый, методом прямой печати сольватными чернилами. После чего производится нанесение фотолюминесцентной пленки на негорючий ПВХ пластик и оформляется в алюминиевую рамку.

Графическая часть содержит символы пожарной безопасности, а также пояснительные надписи. Надписи и графические изображения выполняются в черном цвете. Эвакуационные линии наносятся зеленым.

Схемы размещаются на всех этажах многоэтажных объектов, на путях эвакуации. Существуют нормативные требования к местам расположения: документы находятся в местах хорошей освещенности; в максимально удаленных от выхода местах план обязателен; расстояние между документами на одном этаже не больше 60 метров; план хорошо просматривается с любых точек, не закрывается посторонними предметами; документ не сливается с окраской стен.

Что включает изготовление плана эвакуации

Для создания плана эвакуации заказчик должен предоставить схему помещения (допускается выполнение от руки), на которой будет указана важная для специалиста информация – следующие элементы с соответствующими пометками:

  • «ПК» – пожарный кран;
  • «АПТ» – аптечка медицинской помощи;
  • «ОГ» – огнетушитель;
  • «К» – кнопка пожарной сигнализации;
  • «ЭЛ» – электрощитовая;
  • «Тел» – городской телефон;
  • адрес объекта;
  • название помещения;
  • Ф.И.О. и должность работника, ответственного за утверждение плана (директора организации).

Также следует обозначить пожарные лестницы, место размещения оборудования, которое может стать препятствием на пути у эвакуирующихся людей. Еще указывается место, где будет находиться план эвакуации.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Foundation-Stroy.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: