Выпрямительные диоды большой мощности: основные параметры, принцип работы

Для чего нужны выпрямительные диоды?

Выпрямительный диод особая разновидность диодов, созданные для трансформации переменного тока, если необходимо получить постоянный на входе или выходе. Это не единственная работа, которую выполняют данные диоды. Они нашли свое применение во всех сферах и направлениях радиоэлектроники. Они применяются для создания цепей управления, для коммутации, контроля напряжения, в цепях, где протекает сильный ток. От номинального значения тока, производится классификация выпрямительных диодов. Они бывают следующих видов:

  • малой;
  • средней;
  • высокой.

По сфере применения на диоды из элементов германия (Gr) или кремния (Si). В статье будут описаны все особенности, технические характеристики устройства этих радиодеталей. Также читатель найдет познавательные видеоролики и интересный материал из научной статьи по данной теме.

Технология изготовления и конструкция

Конструкция выпрямительных диодов представляет собой одну пластину кристалла полупроводника, в объеме которой созданы две области разной проводимости, поэтому такие диоды называют плоскостными. Технология изготовления таких диодов заключается в следующем. На поверхность кристалла полупроводника с электропроводностью n-типа расплавляют алюминий, индий или бор, а на поверхность кристалла с электропроводностью p-типа расплавляют фосфор.

Под действием высокой температуры эти вещества крепко сплавляются с кристаллом полупроводника. При этом атомы этих веществ проникают (диффундируют) в толщу кристалла, образуя в нем область с преобладанием электронной или дырочной электропроводностью. Таким образом получается полупроводниковый прибор с двумя областями различного типа электропроводности — а между ними p-n переход. Большинство распространенных плоскостных кремниевых и германиевых диодов изготавливают именно таким способом.

Для защиты от внешних воздействий и обеспечения надежного теплоотвода кристалл с p-n переходом монтируют в корпусе.
Диоды малой мощности изготавливают в пластмассовом корпусе с гибкими внешними выводами, диоды средней мощности – в металлостеклянном корпусе с жесткими внешними выводами, а диоды большой мощности – в металлостеклянном или металлокерамическом корпусе, т.е. со стеклянным или керамическим изолятором.

Электрические параметры

У каждого типа диодов есть свои рабочие и предельно допустимые параметры, согласно которым их выбирают для работы в той или иной схеме:

  • Iобр – постоянный обратный ток, мкА;
  • Uпр – постоянное прямое напряжение, В;
  • Iпр max – максимально допустимый прямой ток, А;
  • Uобр max – максимально допустимое обратное напряжение, В;
  • Р max – максимально допустимая мощность, рассеиваемая на диоде;
  • Рабочая частота, кГц;
  • Рабочая температура, С.

Здесь приведены далеко не все параметры диодов, но, как правило, если надо найти замену, то этих параметров хватает.

Схема простого выпрямителя переменного тока на одном диоде

На вход выпрямителя подадим сетевое переменное напряжение, в котором положительные полупериоды выделены красным цветом, а отрицательные – синим. К выходу выпрямителя подключим нагрузку (Rн), а функцию выпрямляющего элемента будет выполнять диод (VD). При положительных полупериодах напряжения, поступающих на анод диода диод открывается. В эти моменты времени через диод, а значит, и через нагрузку (Rн), питающуюся от выпрямителя, течет прямой ток диода Iпр (на правом графике волна полупериода показана красным цветом).

В итоге получается, что через нагрузку (Rн), подключенную к сети через диод (VD), течет уже не переменный, поскольку этот ток протекает только в положительные полупериоды, а пульсирующий ток – ток одного направления. Это и есть выпрямление переменного тока. Но таким напряжением можно питать лишь маломощную нагрузку, питающуюся от сети переменного тока и не предъявляющую к питанию особых требований, например, лампу накаливания.

Напряжение через лампу будет проходить только во время положительных полуволн (импульсов), поэтому лампа будет слабо мерцать с частотой 50 Гц. Однако, за счет тепловой инертности нить не будет успевать остывать в промежутках между импульсами, и поэтому мерцание будет слабо заметным. Если же запитать таким напряжением приемник или усилитель мощности, то в громкоговорителе или колонках мы будем слышать гул низкого тона с частотой 50 Гц, называемый фоном переменного тока. Это будет происходить потому, что пульсирующий ток, проходя через нагрузку, создает в ней пульсирующее напряжение, которое и является источником фона.

Этот недостаток можно частично устранить, если параллельно нагрузке подключить фильтрующий электролитический конденсатор (Cф) большой емкости. Заряжаясь импульсами тока во время положительных полупериодов, конденсатор (Cф) во время отрицательных полупериодов разряжается через нагрузку (Rн). Если конденсатор будет достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться, а значит, на нагрузке (Rн) будет непрерывно поддерживаться ток как во время положительных, так и во время отрицательных полупериодов. Ток, поддерживаемый за счет зарядки конденсатора, показан на правом графике сплошной волнистой красной линией.

Диодный мост

Диодный мост – это небольшая схема, составленная из 4-х диодов и предназначенная для преобразования переменного тока в постоянный. В отличие от однополупериодного выпрямителя, состоящего из одного диода и пропускающего ток только во время положительного полупериода, мостовая схема позволяет пропускать ток в течение каждого полупериода. Диодные мосты изготавливают в виде небольших сборок заключенных в пластмассовый корпус. Из корпуса сборки выходят четыре вывода напротив которых расположены знаки «+», «—» или «

», указывающие, где у моста вход, а где выход. Но не обязательно диодные мосты можно встретить в виде такой сборки, их также собирают включением четырех диодов прямо на печатной плате, что очень удобно.

Например. Вышел из строя один из диодов моста, если будет стоять сборка, то ее смело выкидываем, а если мост будет собран из четырех диодов прямо на плате — меняем неисправный диод и все готово. На принципиальных схемах диодный мост обозначают включением четырех диодов в мостовую схему, как показано в левой части нижнего рисунка: здесь, диоды являются как бы плечами выпрямительного моста. Такое графическое обозначение моста можно встретить еще в старых журналах по радиотехнике. Однако, на сегодняшний день, в основном, диодный мост обозначают в виде ромба, внутри которого расположен значок диода, указывающий только на полярность выходного напряжения. Теперь рассмотрим работу диодного моста на примере низковольтного выпрямителя. В таком выпрямителе, с использованием четырех диодов, во время каждой полуволны работают поочередно два диода противоположных плеч моста, включенных между собой последовательно, но встречно по отношению ко второй паре диодов.

Применение диодов

Не следует думать, что диоды применяются лишь как выпрямительные и детекторные приборы. Кроме этого можно выделить еще множество их профессий. ВАХ диодов позволяет использовать их там, где требуется нелинейная обработка аналоговых сигналов. Это преобразователи частоты, логарифмические усилители, детекторы и другие устройства. Диоды в таких устройствах используются либо непосредственно как преобразователь, либо формируют характеристики устройства, будучи включенными в цепь обратной связи. Широкое применение диоды находят в стабилизированных источниках питания, как источники опорного напряжения (стабилитроны), либо как коммутирующие элементы накопительной катушки индуктивности (импульсные стабилизаторы напряжения).

Читайте также:
Грамотная обвязка электрического котла

С помощью диодов очень просто создать ограничители сигнала: два диода включенные встречно – параллельно служат прекрасной защитой входа усилителя, например, микрофонного, от подачи повышенного уровня сигнала. Кроме перечисленных устройств диоды очень часто используются в коммутаторах сигналов, а также в логических устройствах. Достаточно вспомнить логические операции И, ИЛИ и их сочетания. Одной из разновидностей диодов являются светодиоды. Когда-то они применялись лишь как индикаторы в различных устройствах. Теперь они везде и повсюду от простейших фонариков до телевизоров с LED – подсветкой, не заметить их просто невозможно.

Параметры диодов

Параметров у диодов достаточно много и они определяются функцией, которую те выполняют в конкретном устройстве. Например, в диодах, генерирующих СВЧ колебания, очень важным параметром является рабочая частота, а также та граничная частота, на которой происходит срыв генерации. А вот для выпрямительных диодов этот параметр совершенно не важен. Основные параметры выпрямительных диодов приведены в таблице ниже.

В импульсных и переключающих диодах важна скорость переключения и время восстановления, то есть скорость полного открытия и полного закрытия. В мощных силовых диодах важна рассеиваемая мощность. Для этого их монтируют на специальные радиаторы. А вот диоды, работающие в слаботочных устройствах, ни в каких радиаторах не нуждаются. Но есть параметры, которые считаются важными для всех типов диодов, перечислим их:

  • U пр.– допустимое напряжение на диоде при протекании через него тока в прямом направлении. Превышать это напряжение не стоит, так как это приведёт к его порче.
  • U обр.– допустимое напряжение на диоде в закрытом состоянии. Его ещё называют напряжением пробоя. В закрытом состоянии, когда через p-n переход не протекает ток, на выводах образуется обратное напряжение. Если оно превысит допустимое значение, то это приведёт к физическому «пробою» p-n перехода. В результате диод превратиться в обычный проводник (сгорит).

Очень чувствительны к превышению обратного напряжения диоды Шоттки, которые очень часто выходят из строя по этой причине.

Обычные диоды, например, выпрямительные кремниевые более устойчивы к превышению обратного напряжения. При незначительном его превышении они переходят в режим обратимого пробоя. Если кристалл диода не успевает перегреться из-за чрезмерного выделения тепла, то изделие может работать ещё долгое время.

  • I пр.– прямой ток диода. Это очень важный параметр, который стоит учитывать при замене диодов аналогами или при конструировании самодельных устройств. Величина прямого тока для разных модификаций может достигать величин десятков и сотен ампер. Особо мощные диоды устанавливают на радиатор для отвода тепла, который образуется из-за теплового действия тока. P-N переход в прямом включении также обладает небольшим сопротивлением. На небольших рабочих токах его действие не заметно, но вот при токах в единицы-десятки ампер кристалл диода ощутимо нагревается. Так, например, выпрямительный диодный мост в сварочном инверторном аппарате обязательно устанавливают на радиатор.
  • I обр.– обратный ток диода. Обратный ток – это так называемый ток неосновных носителей. Он образуется, когда диод закрыт. Величина обратного тока очень мала и его в подавляющем числе случаев не учитывают.
  • U стаб.– напряжение стабилизации (для стабилитронов). Подробнее об этом параметре читайте в статье про стабилитрон.

Кроме того следует иметь в виду, что все эти параметры в технической литературе печатаются и со значком “max”. Здесь указывается предельно допустимое значение данного параметра. Поэтому подбирая тип диода для вашей конструкции необходимо рассчитывать именно на максимально допустимые величины.

Заключение

В статье описаны все тонкости и нюансы работы и устройства выпрямительных диодов и схема их устройства. Более подробно о них можно узнать из стать Что такое диоды.

Принцип работы, характеристика и разновидности выпрямительных диодов

Принцип работы

Принцип работы этого устройства основывается на особенностях p-n перехода. Возле переходов двух полупроводников расположен слой, в котором отсутствуют носители заряда. Это запирающий слой. Его сопротивление велико.

При воздействии на слой определенного внешнего переменного напряжения, толщина его становится меньше, а впоследствии и вообще исчезнет. Возрастающий при этом ток называют прямым. Он проходит от анода к катоду. Если внешнее переменное напряжение будет иметь другую полярность, то запирающий слой будет больше, сопротивление возрастет.

Принцип действия выпрямительного диода

Полупроводники по своим электрическим свойствам являются чем-то средним между проводниками и диэлектриками.

Как ведет себя диод при прямом и обратном включении

Прямое направление

— направление постоянного тока, в котором диод имеет наименьшее сопротивление.

Обратное направление

— направление постоянного тока, в котором диод имеет наибольшее сопротивление.

Рассмотрим поведение тока в цепи при прямом и обратном включении на переменное и постоянное напряжение. Изначально мы будем иметь синусоиду, которая получается от источника переменного тока.

При таких способах подключения отсекается половина синусоиды положительная или отрицательная. На выходе — пульсирующий переменный ток одного знака (считай, постоянный, только загвоздка в том, что им никто не пользуется).

  • анод
    (для прямого включения подключаем к плюсу), основание треугольника
  • катод
    (подключаем к минусу для прямого включения) палочка

Ток течет от анода к катоду, некоторые прибегают к сравнению с воронкой. В широкое горлышко жидкость проходит быстрее, чем в узкое. Принцип работы заключается в пропускании тока при прямом включении и запирании диода при обратном включении (отсутствии тока). Всё дело в запирающем слое, который испаряется или расширяется в зависимости от способа подключения диода.

Рассмотрим поведение диода в схеме постоянного тока. На левом изображении ток, напряжение проходит — лампочка горит (черная) — это прямое включение. На правом изображении диод не пропускает достаточно тока и напряжения для загорания лампочки — обратное включение.

Разновидности устройств, их обозначение

По конструкции различают приборы двух видов: точечные и плоскостные. В промышленности наиболее распространены кремниевые (обозначение — Si) и германиевые (обозначение — Ge). У первых рабочая температура выше. Преимущество вторых — малое падение напряжения при прямом токе.

Принцип обозначений диодов – это буквенно-цифровой код:

  • Первый элемент – обозначение материала из которого он выполнен,
  • Второй определяет подкласс,
  • Третий обозначает рабочие возможности,
  • Четвертый является порядковым номером разработки,
  • Пятый – обозначение разбраковки по параметрам.

Вольт-амперная характеристика

Вольт-амперную характеристику (ВАХ) выпрямительного диода можно представить графически. Из графика видно, что ВАХ устройства нелинейная.

В начальном квадранте Вольт-амперной характеристики ее прямая ветвь отражает наибольшую проводимость устройства, когда к нему приложена прямая разность потенциалов. Обратная ветвь (третий квадрант) ВАХ отражает ситуацию низкой проводимости. Это происходит при обратной разности потенциалов.

Реальные Вольт-амперные характеристики подвластны температуре. С повышением температуры прямая разность потенциалов уменьшается.

Из графика Вольт-амперной характеристики следует, что при низкой проводимости ток через устройство не проходит. Однако при определенной величине обратного напряжения происходит лавинный пробой.

ВАХ кремниевых устройств отличается от германиевых. ВАХ приведены в зависимости от различных температур окружающей среды. Обратный ток кремниевых приборов намного меньше аналогичного параметра германиевых. Из графиков ВАХ следует, что она возрастает с увеличением температуры.

Читайте также:
Из чего состоит и как работает радиатор отопления

Важнейшим свойством является резкая асимметрия ВАХ. При прямом смещении – высокая проводимость, при обратном – низкая. Именно это свойство используется в выпрямительных приборах.

Вольтамперная характеристика (ВАХ)

Вольтамперная характеристика рассматриваемого здесь прибора представлена на размещенном ниже рисунке.


Вольтамперная зависимость

Из нее видно, что в первом квадранте осей координат (справа сверху) располагается прямая ветвь зависимости тока Iпр от подаваемого на выпрямитель напряжения Uпр. Своей формой она указывает на низкое сопротивление диода при положительной полярности приложенного к его полюсам потенциала (линейная часть с наклоном, близким к 45 градусам).

В третьем квадранте (слева внизу) располагается обратная ее ветвь, своим горизонтальным положением указывающая на высокое сопротивление p-n перехода.

В этом квадранте напряжение Uобр на полюсах диода имеет отрицательную полярность, вследствие чего ток Iобр через смещенный в обратном направлении переход близок к нулю.

Коэффициент выпрямления

Анализируя приборные характеристики, следует отметить: учитываются такие величины, как коэффициент выпрямления, сопротивление, емкость устройства. Это дифференциальные параметры.

Он отражает качество выпрямителя.

Его можно рассчитать: он будет равен отношению прямого тока прибора к обратному. Такой расчет приемлем для идеального устройства. Значение коэффициента выпрямления может достигать нескольких сотен тысяч. Чем он больше, тем лучше выпрямитель делает свою работу.

Основные параметры устройств

Какие же параметры характеризуют приборы? Основные параметры выпрямительных диодов:

  • Наибольшее значение среднего прямого тока,
  • Наибольшее допустимое значение обратного напряжения,
  • Максимально допустимая частота разности потенциалов при заданном прямом токе.

Исходя из максимального значения прямого тока, выпрямительные диоды разделяют на:

  • Приборы малой мощности. У них значение прямого тока до 300 мА,
  • Выпрямительные диоды средней мощности. Диапазон изменения прямого тока от 300 мА до 10 А,
  • Силовые (большой мощности). Значение более 10 А.

Существуют силовые устройства, зависящие от формы, материала, типа монтажа. Наиболее распространенные из них:

  • Силовые приборы средней мощности. Их технические параметры позволяют работать с напряжением до 1,3 килоВольт,
  • Силовые, большой мощности, могущие пропускать ток до 400 А. Это высоковольтные устройства. Существуют разные корпуса исполнения силовых диодов. Наиболее распространены штыревой и таблеточный вид.

Применение диодов

Не следует думать, что диоды применяются лишь как выпрямительные и детекторные приборы. Кроме этого можно выделить еще множество их профессий. ВАХ диодов позволяет использовать их там, где требуется нелинейная обработка аналоговых сигналов. Это преобразователи частоты, логарифмические усилители, детекторы и другие устройства. Диоды в таких устройствах используются либо непосредственно как преобразователь, либо формируют характеристики устройства, будучи включенными в цепь обратной связи. Широкое применение диоды находят в стабилизированных источниках питания, как источники опорного напряжения (стабилитроны), либо как коммутирующие элементы накопительной катушки индуктивности (импульсные стабилизаторы напряжения).


Выпрямительные диоды.

С помощью диодов очень просто создать ограничители сигнала: два диода включенные встречно – параллельно служат прекрасной защитой входа усилителя, например, микрофонного, от подачи повышенного уровня сигнала. Кроме перечисленных устройств диоды очень часто используются в коммутаторах сигналов, а также в логических устройствах. Достаточно вспомнить логические операции И, ИЛИ и их сочетания. Одной из разновидностей диодов являются светодиоды. Когда-то они применялись лишь как индикаторы в различных устройствах. Теперь они везде и повсюду от простейших фонариков до телевизоров с LED – подсветкой, не заметить их просто невозможно.

Параметры диодов

Параметров у диодов достаточно много и они определяются функцией, которую те выполняют в конкретном устройстве. Например, в диодах, генерирующих СВЧ колебания, очень важным параметром является рабочая частота, а также та граничная частота, на которой происходит срыв генерации. А вот для выпрямительных диодов этот параметр совершенно не важен. Основные параметры выпрямительных диодов приведены в таблице ниже.


Таблица основных параметров выпрямительных диодов.

В импульсных и переключающих диодах важна скорость переключения и время восстановления, то есть скорость полного открытия и полного закрытия. В мощных силовых диодах важна рассеиваемая мощность. Для этого их монтируют на специальные радиаторы. А вот диоды, работающие в слаботочных устройствах, ни в каких радиаторах не нуждаются. Но есть параметры, которые считаются важными для всех типов диодов, перечислим их:

  • U пр.– допустимое напряжение на диоде при протекании через него тока в прямом направлении. Превышать это напряжение не стоит, так как это приведёт к его порче.
  • U обр.– допустимое напряжение на диоде в закрытом состоянии. Его ещё называют напряжением пробоя. В закрытом состоянии, когда через p-n переход не протекает ток, на выводах образуется обратное напряжение. Если оно превысит допустимое значение, то это приведёт к физическому «пробою» p-n перехода. В результате диод превратиться в обычный проводник (сгорит).

Очень чувствительны к превышению обратного напряжения диоды Шоттки, которые очень часто выходят из строя по этой причине.

Обычные диоды, например, выпрямительные кремниевые более устойчивы к превышению обратного напряжения. При незначительном его превышении они переходят в режим обратимого пробоя. Если кристалл диода не успевает перегреться из-за чрезмерного выделения тепла, то изделие может работать ещё долгое время.

  • I пр.– прямой ток диода. Это очень важный параметр, который стоит учитывать при замене диодов аналогами или при конструировании самодельных устройств. Величина прямого тока для разных модификаций может достигать величин десятков и сотен ампер. Особо мощные диоды устанавливают на радиатор для отвода тепла, который образуется из-за теплового действия тока. P-N переход в прямом включении также обладает небольшим сопротивлением. На небольших рабочих токах его действие не заметно, но вот при токах в единицы-десятки ампер кристалл диода ощутимо нагревается. Так, например, выпрямительный диодный мост в сварочном инверторном аппарате обязательно устанавливают на радиатор.
  • I обр.– обратный ток диода. Обратный ток – это так называемый ток неосновных носителей. Он образуется, когда диод закрыт. Величина обратного тока очень мала и его в подавляющем числе случаев не учитывают.
  • U стаб.– напряжение стабилизации (для стабилитронов). Подробнее об этом параметре читайте в статье про стабилитрон.

Советуем изучить Кабель греющий для кровли

Кроме того следует иметь в виду, что все эти параметры в технической литературе печатаются и со значком “max”. Здесь указывается предельно допустимое значение данного параметра. Поэтому подбирая тип диода для вашей конструкции необходимо рассчитывать именно на максимально допустимые величины.


Диоды высокого тока.

Выпрямительные схемы

Схемы включения силовых устройств бывают различными. Для выпрямления сетевого напряжения они делятся на однофазные и многофазные, однополупериодные и двухполупериодные. Большинство из них однофазные. Ниже представлена конструкция такого однополупериодного выпрямителя и двух графиков напряжения на временной диаграмме.

Переменное напряжение U1 подается на вход (рис. а). Справа на графике оно представлено синусоидой. Состояние диода открытое. Через нагрузку Rн протекает ток. При отрицательном полупериоде диод закрыт. Поэтому к нагрузке подводится только положительная разность потенциалов. На рис. в отражена его временная зависимость. Эта разность потенциалов действует в течение одного полупериода. Отсюда происходит название схемы.

Читайте также:
Газовое, электрическое и другие виды отопления в бане, преимущества и недостатки всех типов

Самая простая двухполупериодная схема состоит из двух однополупериодных. Для такой конструкции выпрямления достаточно двух диодов и одного резистора.

Диоды пропускают только положительную волну переменного тока. Недостатком конструкции является то, что в полупериод переменная разность потенциалов снимается лишь с половины вторичной обмотки трансформатора.

Если в конструкции вместо двух диодов применить четыре коэффициент полезного действия повысится.

Выпрямители широко используются в различных сферах промышленности. Трехфазный прибор задействован в автомобильных генераторах. А применение изобретенного генератора переменного тока способствовало уменьшению размеров этого устройства. Помимо этого, увеличилась его надежность.

В высоковольтных устройствах широко применяют высоковольтные столбы, которые скомпонованы из диодов. Соединены они последовательно.

Импульсные приборы

Импульсным называют прибор, у которого время перехода из одного состояния в другое мало. Они применяются для работы в импульсных схемах. От своих выпрямительных аналогов такие приборы отличаются малыми емкостями p-n переходов.

Для приборов подобного класса, кроме параметров, указанных выше, следует отнести следующие:

  • Максимальные импульсные прямые (обратные) напряжения, токи,
  • Период установки прямого напряжения,
  • Период восстановления обратного сопротивления прибора.

В быстродействующих импульсных схемах широко применяют диоды Шотки.

Характеристики

Каждый тип полупроводников имеет свои рабочие и предельные параметры, которые подбирают для того, чтобы обеспечить работу в какой-либо схеме.

Параметры выпрямительных диодов:

  • I прям max
    — прямой ток, который максимально допустим, А.
  • U обрат max
    — обратное напряжение, которое максимально допустимо, В.
  • I обрат
    — обратный ток постоянный, мкА.
  • U прям
    — прямое напряжение постоянное, В.
  • Рабочая частота
    , кГц.
  • Температура работы
    , С.
  • Р max
    — рассеиваемая на диоде мощность, которая максимально допустима.

Характеристики выпрямительных диодов далеко не исчерпываются данным списком. Однако для выбора детали обычно их бывает достаточно.

Принцип работы, характеристика и разновидности выпрямительных диодов

Одним из электронных устройств, широко использующихся в различных схемах, является выпрямительный диод, с помощью которого переменный ток преобразуется в постоянный. Его конструкция создана в виде двухэлектродного прибора с односторонней электрической проводимостью. Выпрямление переменного тока происходит на переходах металл-полупроводник и полупроводник-металл. Точно такой же эффект достигается в электронно-дырочных переходах некоторых кристаллов – германия, кремния, селена. Эти кристаллы во многих случаях используются в качестве основных элементов приборов.

Принцип работы

Принцип работы этого устройства основывается на особенностях p-n перехода. Возле переходов двух полупроводников расположен слой, в котором отсутствуют носители заряда. Это запирающий слой. Его сопротивление велико.

При воздействии на слой определенного внешнего переменного напряжения, толщина его становится меньше, а впоследствии и вообще исчезнет. Возрастающий при этом ток называют прямым. Он проходит от анода к катоду. Если внешнее переменное напряжение будет иметь другую полярность, то запирающий слой будет больше, сопротивление возрастет.

Классификация по мощности

Мощность элементов определяется максимально допустимым прямым током. В соответствии этой характеристики принята следующая классификация:

  • Слаботочные выпрямительные диоды, они используются в цепях с током не более 0,3 А. Корпус таких устройств, как правило, выполнен из пластмассы. Их отличительные особенности – малый вес и небольшие габариты.


Выпрямительные диоды малой мощности


Выпрямительный диод средней мощности

Силовые полупроводниковые элементы, они рассчитаны на прямой ток свыше 10 А. Производятся такие устройства в металлокерамических или металлостеклянных корпусах штыревого (А на рис. 4) или таблеточного типа (В).


Рис. 4. Выпрямительные диоды высокой мощности

Разновидности устройств, их обозначение

По конструкции различают приборы двух видов: точечные и плоскостные. В промышленности наиболее распространены кремниевые (обозначение — Si) и германиевые (обозначение — Ge). У первых рабочая температура выше. Преимущество вторых — малое падение напряжения при прямом токе.

Принцип обозначений диодов – это буквенно-цифровой код:

  • Первый элемент – обозначение материала из которого он выполнен,
  • Второй определяет подкласс,
  • Третий обозначает рабочие возможности,
  • Четвертый является порядковым номером разработки,
  • Пятый – обозначение разбраковки по параметрам.

Вольт-амперная характеристика

Вольт-амперную характеристику (ВАХ) выпрямительного диода можно представить графически. Из графика видно, что ВАХ устройства нелинейная.

В начальном квадранте Вольт-амперной характеристики ее прямая ветвь отражает наибольшую проводимость устройства, когда к нему приложена прямая разность потенциалов. Обратная ветвь (третий квадрант) ВАХ отражает ситуацию низкой проводимости. Это происходит при обратной разности потенциалов.

Реальные Вольт-амперные характеристики подвластны температуре. С повышением температуры прямая разность потенциалов уменьшается.

Из графика Вольт-амперной характеристики следует, что при низкой проводимости ток через устройство не проходит. Однако при определенной величине обратного напряжения происходит лавинный пробой.

ВАХ кремниевых устройств отличается от германиевых. ВАХ приведены в зависимости от различных температур окружающей среды. Обратный ток кремниевых приборов намного меньше аналогичного параметра германиевых. Из графиков ВАХ следует, что она возрастает с увеличением температуры.

Важнейшим свойством является резкая асимметрия ВАХ. При прямом смещении – высокая проводимость, при обратном – низкая. Именно это свойство используется в выпрямительных приборах.

Стабилизация напряжения и Стабилитроны.

Выходное напряжение обычного, нестабилизированного источника постоянного электрического тока подвержено колебаниям, из- за изменений напряжения на его входе. Рисунок. При подключении различных потребителей потребляющих разный ток напряжение так же меняется – возрастает при меньшей нагрузке, падает при большей. Для нормальной работы электронных устройств необходимо это напряжение стабилизировать, сделав его величину независимой от вышеупомянутых факторов. Стабилитроны это полупроводниковые диоды, использующиеся для стабилизации напряжения в различных источниках питания. В отличии от обычных диодов работают при обратном включении, в режиме пробоя. Это не наносит им вреда, если не превышается предел рассеивающей мощности, величина которого является производной, от падения напряжения на переходе и тока через него протекающего.

Итак, важнейшие параметры стабилитрона — это напряжение стабилизации и максимальный рабочий ток. Рабочий ток стабилитрона, ограничивается с помощью последовательно включенного резистора.

Коэффициент выпрямления

Анализируя приборные характеристики, следует отметить: учитываются такие величины, как коэффициент выпрямления, сопротивление, емкость устройства. Это дифференциальные параметры.

Он отражает качество выпрямителя.

Его можно рассчитать: он будет равен отношению прямого тока прибора к обратному. Такой расчет приемлем для идеального устройства. Значение коэффициента выпрямления может достигать нескольких сотен тысяч. Чем он больше, тем лучше выпрямитель делает свою работу.

Основные параметры устройств

Какие же параметры характеризуют приборы? Основные параметры выпрямительных диодов:

  • Наибольшее значение среднего прямого тока,
  • Наибольшее допустимое значение обратного напряжения,
  • Максимально допустимая частота разности потенциалов при заданном прямом токе.

Исходя из максимального значения прямого тока, выпрямительные диоды разделяют на:

  • Приборы малой мощности. У них значение прямого тока до 300 мА,
  • Выпрямительные диоды средней мощности. Диапазон изменения прямого тока от 300 мА до 10 А,
  • Силовые (большой мощности). Значение более 10 А.
Читайте также:
Как вешать рулонные шторы на пластиковые окна

Существуют силовые устройства, зависящие от формы, материала, типа монтажа. Наиболее распространенные из них:

  • Силовые приборы средней мощности. Их технические параметры позволяют работать с напряжением до 1,3 килоВольт,
  • Силовые, большой мощности, могущие пропускать ток до 400 А. Это высоковольтные устройства. Существуют разные корпуса исполнения силовых диодов. Наиболее распространены штыревой и таблеточный вид.

Силовые диоды

> Теория > Силовые диоды

Силовые диоды (варикапы) являются полупроводниковыми приборами, функционирующими за счет использования одного стандартного p-n-перехода. Данные элементы бывают различных видов, в зависимости от того, в какой сфере они используются. Также они различаются своими характеристиками.

Такие диоды еще называются выпрямительными, а их функция – преобразовывать переменный ток в однополярный. С этой целью варикап включают последовательно в цепь источника переменного тока и нагрузки. Ниже рассмотрим, что собой представляет данный прибор, и каковы его особенности.

Как классифицируются

Учитывая максимальный уровень прямого тока, диоды выпрямительного типа бывают:

  • маломощные – актуальны для выпрямления прямого тока до 300 mA;
  • средней мощности – 300 mA-10 A;
  • выпрямительные диоды большой мощности – больше 10 А.

При их изготовлении используется кремний или германий, однако, наиболее распространены кремниевые элементы, обладающие лучшими физическими свойствами. Их обратные токи в разы меньше, если сравнивать с германиевыми, при этом напряжение то же. Благодаря этой характеристике, в полупроводниках можно добиться высокой величины допустимого обратного напряжения – до 1500 В. Что касается германиевых диодов, здесь данный показатель варьируется от 100 до 400 В.

Также следует обратить внимание на сохранение функциональности при температурных нагрузках:

  • Кремниевые – сохраняют свои свойства при температуре от -60 до +150 градусов Цельсия;
  • Германиевые – от -60 до +85 градусов.

Обуславливается это тем, что когда уровень нагрева превышает +85 градусов, образуются электронно-дырочные пары, увеличивающие обратный ток, из-за чего работа диода становится менее эффективной.

Выпрямительными диодами называют полупроводниковые кристаллы, имеющие вид пластины. В их теле находятся две области с разной проводимостью. Именно по этой причине данные приборы носят название плоскостных. Процесс их производства выглядит следующим образом: сверху кристалла с n-проводимостью расплавляют алюминий, индий и бор, а на p-типе –фосфор.

Под влиянием высокой температуры элементы плотно сплавляются друг с другом. Также следует заметить, что атомы данных материалов диффундируют в сам кристалл, из-за чего в нем появляется проводимость электронного или дырочного типа. Как результат, создается полупроводниковое устройство с двумя разными областями и отличающейся электропроводностью.

Многие плоскостные мощные диоды, изготовленные из германия или кремния, функционируют именно по этому принципу.

Выделяют следующие виды силовых диодов:

  • Импульсные;
  • Обращенные;
  • Диоды Шоттки.

Импульсными – оборудуются, как правило, схемы невысокой мощности, к которым напряжение подводится импульсно. К ним предъявляется одно требование – из одного состояния в другое они должны переходить за короткий промежуток времени. Импульсные диоды имеют следующие особенности:

  • Время восстановления – время, за которое переключается напряжение на варикапе с прямого на обратное, и момент, когда ток уменьшается до определенного значения;
  • Время установления – интервал, когда прямой ток начинает протекать через прибор до определенной величины до момента установления выбранного напряжения;
  • Максимальный ток восстановления – обратный ток, прошедший через диод после переключения.

Отличительная черта обращенных диодов в том, что они в p-n-областях характеризуются большой концентрацией примесей. Обратное включение характеризуется малым сопротивлением, прямое – большим. Исходя из этого, они актуальны там, где требуется выпрямление малых сигналов, амплитуда которых не превышает нескольких десятков вольт.

Преимущество диодов Шоттки сводится к переходу металл-полупроводник. Производятся с использованием низкоомных n-кремниевых подложек и высокоомного эпитаксиального слоя (тонкий слой) аналогичного полупроводника.

Сверху описанного слоя наносится металлический электрод, который отвечает за выпрямление, но он не способен инжектировать неосновные носители в базовую область.

По этой причине в данных приборах не протекают медленные процессы – в них не накапливаются и не рассасываются неосновные носители в базе. Исходя из этого, диоды Шоттки имеют невысокую инерционность.

Выпрямительные схемы

Схемы включения силовых устройств бывают различными. Для выпрямления сетевого напряжения они делятся на однофазные и многофазные, однополупериодные и двухполупериодные. Большинство из них однофазные. Ниже представлена конструкция такого однополупериодного выпрямителя и двух графиков напряжения на временной диаграмме.

Переменное напряжение U1 подается на вход (рис. а). Справа на графике оно представлено синусоидой. Состояние диода открытое. Через нагрузку Rн протекает ток. При отрицательном полупериоде диод закрыт. Поэтому к нагрузке подводится только положительная разность потенциалов. На рис. в отражена его временная зависимость. Эта разность потенциалов действует в течение одного полупериода. Отсюда происходит название схемы.

Самая простая двухполупериодная схема состоит из двух однополупериодных. Для такой конструкции выпрямления достаточно двух диодов и одного резистора.

Диоды пропускают только положительную волну переменного тока. Недостатком конструкции является то, что в полупериод переменная разность потенциалов снимается лишь с половины вторичной обмотки трансформатора.

Если в конструкции вместо двух диодов применить четыре коэффициент полезного действия повысится.

Выпрямители широко используются в различных сферах промышленности. Трехфазный прибор задействован в автомобильных генераторах. А применение изобретенного генератора переменного тока способствовало уменьшению размеров этого устройства. Помимо этого, увеличилась его надежность.

В высоковольтных устройствах широко применяют высоковольтные столбы, которые скомпонованы из диодов. Соединены они последовательно.

Использование сборки

При эксплуатации выпрямительного полупроводникового диода польза извлекается только из половины волн переменного тока, соответственно, безвозвратно теряется более половины входного напряжения.

С целью улучшить качество преобразования переменного тока в постоянный используется сборка из четырех устройств – диодный мост. Выгодно отличается тем, что пропускает ток на протяжении каждого полупериода. Диодные мосты производят в виде комплекта, заключенного в пластиковый корпус.


Принципиальная схема диодного моста

Импульсные приборы

Импульсным называют прибор, у которого время перехода из одного состояния в другое мало. Они применяются для работы в импульсных схемах. От своих выпрямительных аналогов такие приборы отличаются малыми емкостями p-n переходов.

Для приборов подобного класса, кроме параметров, указанных выше, следует отнести следующие:

  • Максимальные импульсные прямые (обратные) напряжения, токи,
  • Период установки прямого напряжения,
  • Период восстановления обратного сопротивления прибора.

В быстродействующих импульсных схемах широко применяют диоды Шотки.

Тиристоры.

Трехэлектродные тиристоры(тринисторы) — полупроводниковые приборы, применяемые для регулирования мощности в сетях переменного и постоянного токов. Тиристор легко переходит из закрытого (непроводящего) состояния в открытое, при подаче на управляющий электрод открывающего импульса. После того, как тиристор открыт, он остается в таком состоянии, пока протекающий через него ток не снизится до определенного порогового значения.

При работе в цепях переменного тока, подобное снижение происходит с каждой сменой полярности, при изменении фазы. В цепях постоянного тока, для отключения используются специальные схемы.

Читайте также:
Дом из кирпича: красного, лего, клинкерного, облицовочного и силикатного, его плюсы и минусы, фото, а также строительство одноэтажных и двухэтажных коттеджей

Делаем сварочные аппараты своими руками

Сварочные работы в домашних условиях давно стали обычным делом. Доступность аппаратов и расходных материалов, возможность недорого обучиться на курсах сварщиков, различные методички для получения самостоятельных навыков. Все эти факторы дают возможность сэкономить на оплате труда профессионального сварщика, и повысить оперативность работ.

Однако, если внимательно изучить рынок сварочных аппаратов, выясняются неприятные моменты:

  • Качественные сварочники имеют высокую стоимость, выгоднее несколько раз нанять специалиста (если, конечно, вы не занимаетесь этими работами постоянно).
  • Доступные по цене агрегаты имеют ряд недостатков: низкая надежность, плохое качество шва, зависимость от питающего напряжения и типа расходников.

Отсюда вывод: если необходимо высокое качество оборудования по доступной цене, придется сделать сварочный аппарат из доступных материалов своими руками.

Прежде чем рассматривать варианты самодельных сварочников, разберем принцип их работы

В основе работы любого агрегата лежит закон Ома. При неизменной мощности, имеется обратная зависимость между током и напряжением. Для нормальной работы требуется сила тока 60–150 А. Только в этом случае металл в зоне сварки будет плавиться. Представим себе сварочный аппарат, который работает напрямую с напряжением 220 вольт. Для достижения требуемой силы тока, потребуется мощность 15–30 кВт. Во-первых, для этого надо будет прокладывать отдельную линию энергоснабжения: большинство вводов в жилые помещения ограничены техническими условиями на уровне 5–10 кВт. Кроме того, для такой силы тока потребуется проводка сечением не менее 30 мм². Варить придется с соблюдением мер защиты при работе в электроустановках до 1000 вольт: резиновые боты, перчатки, ограждение рабочего места, и прочее.

Разумеется, обеспечить такие условия в реальности невозможно.

Поэтому любой сварочный аппарат преобразует напряжение (в сторону понижения): на выходе получаем искомый ток при сохранении разумной мощности.

Оптимальное значение напряжения — 60 вольт. При сварочном токе 100 А, это вполне приемлемые 6 кВт мощности. Как преобразовать напряжение?

Существуют четыре основных типа сварочных аппаратов

  1. Трансформатор. Устройство работает на переменном токе. Основной узел ничем не отличается обычного блока питания: на входе 220 вольт, на выходе требуемые 60 вольт. За счет возможности механического перемещения вторичной обмотки по сердечнику, меняется значение рабочего тока.Преимущества: простота и дешевизна конструкции, ремонтопригодность.Недостатки: большие размер и вес, переменный ток приводит к нестабильному формированию сварочного шва, для работы требуется высокая квалификация специалиста.
  2. Выпрямитель. По сути, это тот же трансформатор, только с диодным (тиристорным) выпрямителем в цепи вторичной обмотки.После преобразования напряжения на трансформаторе (с традиционным механическим регулятором силы тока), вторичное переменное напряжение выпрямляется одним из способов. В примитивных (недорогих) конструкциях применяется диодный мост. Более продвинутые схемы работают на тиристорной схеме, с возможностью регулировки параметров.Преимущества: стабильные параметры сварки, возможность работать с различными металлами, не требуется высокая квалификация мастера.Недостатки: более высокая стоимость, сложность в ремонте и обслуживании.Некоторые мастера переделывают простейший трансформаторный сварочник в аппарат постоянного тока. Для этого необходимо лишь собрать мощный выпрямитель, и подключить его к выходу вторичной обмотки. Для этого потребуются мощные диоды (собираем мост) и радиаторы для рассеивания тепла.

Общий недостаток рассмотренных схем — зависимость выходных параметров от качества электросети. Если есть просады напряжения (при сварке — это нормальное явление), меняются характеристики выходных напряжения и тока. За счет этого страдает качество сварочного шва. Поэтому ручная регулировка силы тока (перемещением обмоток) обязательна.

Любой из перечисленных аппаратов можно собрать самостоятельно. Проведем обзор технологий изготовления по моделям:

Трансформаторы (с выпрямителем или без него)

Сердце трансформатора — сердечник. Он набирается из пластин трансформаторной стали, изготовить которые вручную довольно проблематично. Правдами и неправдами исходный материал добывается на заводах, в строительных бригадах, на пунктах сбора металлолома. Полученная конструкция (как правило, в виде прямоугольника) должна иметь сечение не меньше, чем 55 см². Это довольно тяжелая конструкция, особенно после укладки обмоток.

При сборке обязательно надо предусмотреть регулировочный винт, с помощью которого можно двигать вторичную обмотку относительно неподвижной первички.

Чтобы не вдаваться в сложности расчетов сечения проводов, возьмем типовые параметры:

  • сила тока на вторичке 100–150 А;
  • напряжение холостого хода 60–65 вольт;
  • рабочее напряжение при сварке 18–25 вольт;
  • сила тока на первичной обмотке до 25 А.

Исходя из этого, сечение провода первички должно быть не менее 5 мм², если делать с запасом — можно взять провод 6–7 мм². Изоляция должна быть жаростойкой, из материала, не поддерживающего горение.

Вторичная обмотка набирается из провода (а лучше медной шины), сечением 30 мм². Изоляция тряпичная. Пусть толщина вас не пугает, количество витков на вторичке небольшое.

Количество витков первичной обмотки определяется по коэффициенту 0.9–1 виток на вольт (для наших параметров).

Формула выглядит так:

W(количество витков) = U(напряжение) / коэффициент.

То есть, при напряжении в сети 200–210 вольт, это будет порядка 230–250 витков.

Соответственно, при напряжении вторички 60–65 вольт, количество ее витков составит 67–70.

С технической точки зрения трансформатор готов. Для удобства использования рекомендуется выполнить небольшой запас по вторичной обмотке, с несколькими ответвлениями (на 65, 70, 80 витках). Это позволит уверенно работать в местах с пониженным напряжением сети.

Прятать агрегат в корпус, или оставлять открытым — это вопрос безопасности использования. Типовой изготовленный сварочный трансформатор своими руками выглядит так:

Оптимальный материал для корпуса — текстолит 10–15 мм.

Добавляем выпрямитель

Самодельный мощный сварочный трансформатор с точки зрения схемотехники — обычный блок питания. Соответственно выпрямитель устроен так же просто, как в сетевом заряднике для мобильного телефона. Только элементная база будет выглядеть на несколько порядков массивнее.

Как правило, в простую схему из диодного моста добавляют пару конденсаторов, гасящих импульсы выпрямленного тока.

Можно собрать выпрямитель и без них, но чем ровнее ток, тем качественней получается сварочный шов. Для сборки собственно моста применяются мощные диоды типа Д161–250(320). Поскольку при нагрузке на элементах выделяется много тепла, его нужно рассеивать с помощью радиаторов. Диоды крепятся к ним с помощью болтового соединения и термопасты.

Разумеется, ребра радиаторов должны либо обдуваться вентилятором, либо выступать над корпусом. Иначе вместо охлаждения они будут греть трансформатор.

Мини сварочный трансформатор

Если вам не нужно варить рельсы или швеллера из стали 4–5 мм, можно собрать компактный сварочник для спайки стальной проволоки (изготовление каркасов для самоделок) или сварки тонкой жести. Для этого можно взять готовый трансформатор от мощного бытового прибора (идеальный вариант — микроволновка), и перемотать вторичную обмотку. Сечение провода 15–20 мм², потребляемая мощность не более 2–3 кВт.

Расчет схемы производится также, как и для более мощных агрегатов. При сборке выпрямителя можно использовать менее мощные диоды.

Микросварочник

Если сфера применения ограничена спайкой медных проводов (например, при монтаже распределительных коробок), можно ограничиться конструкцией размером с пару спичечных коробков.

Читайте также:
Делаем самодельную лебедку на УАЗ своими руками: из стартера, дрели или шуруповерта с питанием на 220 В и 12 В

Выполняется на транзисторе КТ835 (837). Трансформатор изготавливается самостоятельно. Фактически — это высокочастотный повышающий преобразователь.

В отличие от традиционных сварочников, в данной схеме используется высокое напряжение, до 30 кВ. Поэтому при работе следует соблюдать осторожность.

Трансформатор мотаем на ферритовом стержне. Две первичные обмотки: коллекторная (20 витком 1 мм), базовая (5 витков 0.5 мм). Вторичная (повышающая) обмотка — 500 витков 0.15 проволоки.

Собираем схему, припаиваем по схеме резисторную обвязку (чтобы трансформатор не перегревался на холостом ходу), аппарат готов. Питание от 12 до 24 вольт, с помощью такого аппарата можно сваривать жгуты проводов, резать тонкую сталь, соединять металлы толщиной до 1 мм.

В качестве сварочных электродов можно использовать толстую швейную иглу.

Инвертор (импульсный блок питания для сварки)

Самодельный инверторный сварочный аппарат нельзя изготовить просто «на коленке». Для этого потребуется современная элементная база и опыт работы с ремонтом и созданием электронных устройств. Однако, не так страшна схема, как ее малюют. Подобных устройств сделано великое множество, и все они работают не хуже фабричных аналогов. К тому же, чтобы создать импульсный сварочный аппарат своими руками, не обязательно приобретать десятки дорогостоящих радиодеталей и готовых узлов. Большинство из них, особенно высокочастотные элементы для блока питания, можно позаимствовать у старых телевизоров или БП от компьютера. Стоимость близкая к нулю.

Рассматриваемый инвертор имеет следующие характеристики:

  • Ток нагрузки на электродах: до 100 А.
  • Потребляемая мощность от сети 220 вольт — не более 3.5 кВт (ток порядка 15 А).
  • Используемые электроды до 2.5 мм.

На иллюстрации изображена готовая схема, которая неоднократно опробована многими домашними мастерами.

Конструктивно инвертор состоит из трех элементов:

  1. Блок питания для схемы преобразователя и управления. Выполнен на доступной элементной базе, с применением оптрона от старого блока питания компьютера. При самостоятельном изготовлении трансформатора стоимость практически нулевая: детали копеечные. Номиналы и названия радиоэлементов на иллюстрации.
  2. Блок задержки заряда конденсаторов (для стартовой дуги). Выполнен на базе транзисторов КТ972 (абсолютно не дефицит). Разумеется, транзисторы устанавливаются на радиаторы. Для коммутации достаточно обыкновенного автомобильного реле с токовой нагрузкой на контактах до 40 А. Для ручного управления установлены обычные защитные автоматы (пакетники) на 25 А. Выходные 300 вольт — холостой ход. При нагрузке напряжение 50 вольт.
  3. Трансформатор тока — самый ответственный узел. При сборке особое внимание следует обратить на точность катушек индуктивности. Некоторую подстройку можно выполнить с помощью переменного резистора (на схеме выделен красным цветом). Однако если параметры не буду согласованными, требуемой мощности дуги достичь не удастся.ШИМ реализуется на микросхеме US3845 (одна из немногих деталей, которую придется покупать). Силовые транзисторы — все те же КТ972 (973). Некоторые элементы на схеме импортные, однако их легко можно заменить на доступные отечественные, поискав аналоги на сайте datasheet.Высокочастотный блок выполнен из частей строчного трансформатора от телевизора.

На выход сварочного инвертора подключаются рабочие провода длиной не более 2 метров. Сечение не менее 10 квадратов. При работе с электродами до 2.5 мм, падение тока минимальное, шов получается гладкий и ровный. Дуга непрерывная, не хуже заводского аналога.

При наличии активного охлаждения (вентиляторы от того-же компьютерного блока питания), конструкцию можно компактно упаковать в небольшой корпус. Учитывая высокочастотные преобразователи, лучше использовать металл.

Где купить

Максимально быстро приобрести прибор можно в ближайшем специализированном магазине. Оптимальным же, по соотношению цена-качество, остаётся вариант покупки в Интернет-магазине АлиЭкспресс. Обязательное длительное ожидание посылок из Китая осталось в прошлом, ведь сейчас множество товаров находятся на промежуточных складах в странах назначения: например, при заказе вы можете выбрать опцию «Доставка из Российской Федерации»:

Чем сложнее самодельный сварочный аппарат, тем ощутимей экономия. Именно простые трансформаторы обходятся дороже, по причине использования дорогостоящей меди в обмотках или трансформаторного железа. Импульсные блоки питания, особенно при наличии в запасе старых деталей от типовых электроприборов, обходятся практически бесплатно.

Видео по теме

Сварочный выпрямитель – как из синусоиды сделать прямую?

Выпрямитель сварочный предназначается для питания электрическим током сварочного поста при ручной, электродуговой сварке. Его задача – преобразование тока переменной частоты в постоянный электрический разряд, необходимый для процесса плавления металла.

Устройство сварочного выпрямителя – начнем с теории

Бытовые сварочные аппараты – это выпрямители и инверторы малой мощности, со сравнительно низким номинальным сварочным током. Имея большую длительность паузы для охлаждения между периодами работы, они малоэффективны при выполнении больших объемов работ в промышленности и производстве. Единственная занимаемая такими агрегатами ниша – бытовое назначение, а также мелко-подрядный бизнес.

Классическая компоновка сварочного аппарата включает в себя:

  • понижающий трансформатор;
  • выпрямитель (мост из полупроводниковых элементов);
  • конденсаторный блок (для сглаживания пульсаций на выходе преобразователя).

Перед изготовлением или приобретением любого инструмента, будь это строительный уровень или перфоратор, а у нас сварочный аппарат, необходимо определить, какие виды работ он будет выполнять. От этого напрямую зависят массогабаритные показатели устройства, типоразмер используемого электрода и, соответственно, толщина листов свариваемого металла.

Наилучшие показатели по качеству выходящего тока имеют трехфазные аппараты, подключаемые к сети 380 Вольт. Ими можно дольше работать без перерывов для охлаждения, а также производить работы с более массивными стальными конструкциями в пределах 200-400 Ампер. Идеально подойдут для сварки контейнеров, ларьков, гаражных ворот. Это то, что нужно, для малого бизнеса.

Существенным недостатком является ограниченный доступ к питающей сети. Не все дачные поселки и гаражные общества могут похвастаться доступом к таким силовым коммуникациям. К тому же, сварочный аппарат, обладающий трехфазным трансформатором, будет в 1,5-2 раза тяжелее однофазного собрата. Суммарный вес устройства с легкостью перевалит за сотню килограмм. Одному человеку такой вес не под силу, возникает необходимость монтировать колеса для передвижения или же использовать тороидальный трансформатор, который снизит общий вес на 20-40 процентов. Но стоит учесть, что его придется наматывать самому.

Однофазный сварочный выпрямитель для сварки, смонтированный на однофазном трансформаторе, рассчитанном на сеть 220 Вольт, значительно легче. Его масса на 90 % зависит от веса понижающего трансформатора и будет в пределах 30-80 килограмм. Данная техника может работать на токах 125-180 Ампер, обеспечивая качественный сварной шов при сварке несложных конструкций – ворот, навесов или ручной бетономешалки. Легкость и доступность электрической сети делают однофазные устройства крайне мобильными. Ими можно работать не только на верхних этажах высоток, но и там, где электричества нет вообще, питаясь от бензинового генератора.

Самодельный сварочный выпрямитель для однофазной сети

Вспомним школьный курс физики и поговорим о теории. Переменный ток представляет собой синусоиду или волну, которая производит колебания с частотой 50 Гц. Это означает, что за 1 секунду электричество 25 раз течет в одном направлении и 25 раз в обратном. Для процесса сварки необходимо протекание электричества только в одном направлении.

Читайте также:
Как выбирать пылесосы Samsung с контейнером для сбора пыли и правильно их использовать?

Если цепь вторичной обмотки трансформатора дополнить полупроводниковым элементом, к примеру простейшим диод, то он будет пропускать электричество только в одну сторону, а значит мы получим постоянный ток. Однако он будет пульсирующим, с частотой 25 Гц, т.е. после каждой «волны» будет аналогичная по времени, безтоковая пауза, а это нас не устраивает.

Если диод поставить наоборот, то он будет пропускать поток электронов в другую сторону, так называемую обратную полуволну. Поставив два диода по направлению друг к другу, между ними мы получим ток, представляющий собой волны, возрастающие от нуля до максимального значения напряжения, на которое рассчитана вторичная обмотка трансформатора и спадающие до нуля, после достижения которого начнется новая волна.

Таким образом получается положительный полюс источника тока, отрицательный полюс будет располагаться в центре вторичной обмотки трансформатора. Именно поэтому данная схема применима только, если у силового трансформатора есть соответствующий вывод. Если мы наматываем трансформатор самостоятельно, то вывод можно сделать, остальные случаи заставят нас частично разбирать обмотку, что нежелательно. Преимущество данной схемы – это малое количество используемых полупроводников, их всего два, а также то, что вторичная обмотка устройства разделена на две части, и, по сути, половину времени работы задействована одна часть обмотки, а другую половину – другая.

Самым распространенным вариантом рассматриваемых двухполупериодных схем выпрямления является мостовая. Она представляет собой квадрат, в каждую из сторон которого включен диод. С двух противоположных углов квадрата снимается постоянное напряжение, а на два других оно подается со вторичной обмотки трансформатора. Преимущество такого выпрямителяэто отсутствие необходимости выводить отдельный провод со вторичной обмотки, недостатком же является использование аж четырех полупроводниковых вентилей. Обе вышеупомянутые схемы, без дополнительной конденсаторной батареи, на выходе будет иметь среднее напряжение меньшее чем выходящее со вторичной обмотки.

  • Ucp=2*Uво/pi;
  • где: Ucp – действующее среднее значение напряжения;
  • Uво – напряжение на вторичной обмотке трансформатора;
  • pi – константа, число Пи (3,14).

Соответственно, ток сварки будет меньше, отсюда и меньший диаметр применяемого электрода и толщины свариваемого металла. Для уменьшения колебания напряжения на выходе сварочный выпрямитель, собранный своими руками, должен иметь параллельно включенный нагрузке конденсатор, расчет его параметров приведен ниже:

Время зарядки конденсатора:

  • t(зар)=(arccos(Umin/Umax))/(2*pi*f);
  • где t(зар) – время зарядки конденсатора.
  • Umin – минимальное значение, до которого разрядится конденсатор (выбираем сами, исходя из колебаний напряжения на выходе, примем равным 30 В);
  • Umax – амплитудное сетевое напряжение (Umax = 1,41* Uво=1,41*25=35,25 В);
  • f – частота сети, 50 Гц;
  • t(зар)=(arccos(30/35,25))/(2*3,14*50)=0,00176 секунд.

Определяем время разрядки конденсаторной батареи:

  • t(раз)=T-t(зар);
  • где Т=0,01с (для данных схем выпрямления);
  • t(раз)=0,01-0,00176 = 0,00824 с.

Находим ток нагрузки, на который рассчитан наш сварочный аппарат, его можно взять из расчета трансформатора или же определить по старой школьной формуле:

  • Iнагр= Uво/R;
  • где R – сопротивление цепи сварки, для расчета можно принять равным в пределах 0,13-0,18 Ом;
  • Iнагр= 25/0,18=139 А.

Определяем емкость конденсатора, на которой за время t(раз) при токе нагрузки Iнагр напряжение уменьшится с Umax до Umin:

  • C=Iнагр*t(раз)/(Umax-Umin);
  • C=139*0,00824/(35,25-30) = 0,217 Ф = 217 000 мкф.

Для выбора конденсатора важно знать и пиковый зарядный ток, находим его:

  • Ipic=C*(Umax-Umin)/t(зар);
  • Ipic=0,217*(35,25-30)/0,00176=647 А.

Осталось определить среднеквадратичное значение импульсного тока через конденсатор, оно вычисляется по формуле:

  • Isi=√(I(зар)²+I(разр)²);
  • где I(зар) — среднеквадратичный ток через конденсатор на цикле заряда;
  • I(разр) — среднеквадратичный ток через конденсатор на цикле разряда.
  • I(зар)=Ipic*√((t(зар)/T)/3);
  • I(зар)=647*√((0,00176/T)/3)=156,7 А;
  • I(разр)=Iнагр*t(раз)/T;
  • I(разр)=139*0,00824/0,01=114,5 А.

Рассчитанная нами емкость достаточна велика, единичного электролита на такую емкость не найти, а если собирать батарею, то она будет внушительных размеров. Есть смысл поставить батарею меньшей емкости, но при этом падение напряжения между волнами будет больше. Выбирая конденсатор, ориентируйтесь сначала на значение Isi, а уже после на его емкость. Isi показывает, успеет ли зарядиться конденсатор за время прохождения тока, если нет, то ставить конденсатор вообще бессмысленно. Если электролита необходимой емкости нет, то ставим несколько, соединяя их параллельно.

Схема сварочного выпрямителя, работающего от трехфазной сети

Выпрямители, построенные для питания от трехфазной электрической сети, имеют меньшую пульсацию выходного напряжения, благодаря тому, что фазы сети перекрывают друг друга, и напряжение не опускается до нуля. Один из вариантов построения трехфазного выпрямителя – это включение в каждую фазу, за обмоткой трансформатора, полупроводникового элемента, по направлению от обмотки. Далее эти выходы от диодов коммутируются в один вывод – положительный полюс источника питания, отрицательным полюсом является нулевой вывод с обмоток трансформатора.

Диодный мост пропускает только одну полуволну от каждой фазы, смещенную на 120 электрических градусов относительно друг друга. Пульсации у данной схемы в три раза чаще, чем у схем с одним включенным диодом, но амплитуда колебаний значительно меньше. Преимущества такой конструкции – это использование всего трех полупроводников, а вот недостаток все тот же – нулевой вывод с обмотки трансформатора, а значит соединение обмоток питающего трансформатора только по схеме «звезда».

Мостовая трехфазная схема выпрямления или схема Ларионова уменьшает амплитуду пульсаций, но увеличивает их количество в три раза, по сравнению с предыдущей схемой. Диоды располагаются последовательно один за другим, а между ними к цепи подключается фаза трансформатора. Выходы с полупроводников после каждой фазы соединяются, образуя положительный полюс источника питания. Соединив входы диодов, располагающиеся до соединения цепи с фазой, получим отрицательный полюс.

Такая схема идеальна с точки зрения изготовления сварочного выпрямителя своими руками без дополнительных электронных составляющих. Вводить в цепь параллельно нагрузке конденсатор можно, но не целесообразно, качество напряжения на выходе и так высокое. Еще одним преимуществом данной схемы является возможность соединять обмотки, как по схеме «треугольник», так и по схеме «звезда», не используя «нулевой» провод.

Многопостовые сварочные выпрямители – считаем рабочие места

Трехфазные сети также позволяют подключать многопостовые сварочные аппараты. Мощности бытовой, однофазной сети на 220 Вольт попросту не хватит для столь мощной нагрузки. Для обеспечения работы всех постов выпрямители имеют жесткую внешнюю Вольт-Амперную характеристику. Каждый вывод для сварки имеет собственный реостат и дроссель, для индивидуальной регулировки.

Их преимущество в меньших затратах на обслуживании оборудования, а сфера применения – сварочные площадки с большим объемом работы. Это могут быть строительные площадки, на которых производится монтаж сложных металлоконструкций или судостроительные верфи. То есть область применения промышленность, но никак не быт. Количество подключаемых сварочных постов для многопостового выпрямителя рассчитаем по формуле:

  • n= Iвыпр/k* Iнагр;
  • где Iвыпр – номинальный ток, на который рассчитан выпрямитель;
  • Iнагр – ток, необходимый для одного поста;
  • k – коэффициент, учитывающий одновременную работу постов, для механической сварки берется в пределах 0.5-0.7.
Читайте также:
Вязка арматуры монолитной плиты: как правильно вязать, схемы вязки

Сварочный выпрямитель своими руками

Выпрямитель для сварочного аппарата строится вокруг полупроводниковых элементов, суть которых – пропускать электрические потоки только в одном направлении. На сегодняшний день использовать в схемах выпрямления можно три устройства:

  • диод (самый лучший, потому что самый простой, при его использовании в схему выпрямительного устройства не надо вводить блоки управления);
  • тиристор (для протекания тока он должен получить сигнал от системы управлении, когда проходящий ток опускается до нуля или напряжение на нем становится меньше, чем в следующей фазе, вентиль запирается);
  • транзистор (полностью управляемый «вентиль», для открытия и закрытия которого необходимо подавать сигнал на управляющий электрод, к тому же, самый дорогостоящий элемент).

Использовать диод лучше всего, подумаете вы, он проще и удобней в эксплуатации. Однако есть одна особенность, при использовании диодов электрическая цепь потребует введения резистора, для регулирования силы тока. При использовании транзистора или тиристора регулировка напряжения может осуществляться блоком управления, через задержку открытия-закрытия «вентилей», уменьшая напряжение на выходе выпрямителя и тем самым снижая ток.

Очень важно выбирать любой из вышеперечисленных элементов с запасом. Реально протекающий по цепи ток должен быть в 1.5-2 раза меньше, чем номинальный, на который рассчитан полупроводник. Максимальное обратное напряжение «вентиля» должно быть в 2 раза выше, чем напряжение на вторичной обмотке трансформатора. Иначе возможны пробои элементов или выход из строя из-за перегрева.

Если есть желание, деньги и время повозиться с блоком управления, то ставим тиристоры или силовые транзисторы. Найти схему устройства блоков управления достаточно просто.

Использование диодного моста подразумевает применение мощного сопротивления, для регулировки тока сварки. Идеальный вариант – использование готового реостата в виде нихромовой или никелевой проволоки, намотанной на термостойкий диэлектрик. Можно подобрать фехралевую ступень разгона для электрических двигателей, ну или на крайний случай – стальную проволоку, опять же намотанную на диэлектрик. Выбирая сопротивление, следует исходить из того, что полностью введенное в цепь сопротивление снизит ток до нуля. Длина реостата рассчитывается по следующей формуле:

  • L=R/r*S;
  • где R – полная величина сопротивления, необходимая для уменьшения тока сварки до нуля;
  • r – удельное сопротивление материала, берется из справочника, как вариант, Википедии;
  • S – сечение наматываемой проволоки.

Еще один элемент, который иногда используют в схеме выпрямителя – дроссель. Рассчитать его параметры достаточно сложно и трудоемко, определение простого значения индуктивности не поможет. Даже если вы знаете количество витков, значительное влияние на индуктивность может оказать плотность намотки меди на магнитопровод, а также наличие зазора между проволокой и стальным сердечником.

Выход из данной ситуации – это экспериментальное определение: наматываем дроссель в несколько слоев с пятью или шестью отводами, производим тестовую сварку и по характерному треску, а также брызгам расплавленного металла подбираем индуктивность. Чем меньше брызг и слабее треск, тем лучше. Однако не всегда требуется внедрение индуктивности, так как для обеспечения падающей Вольт-Амперной характеристики сварочного аппарата может хватить индуктивности обмоток трансформатора.

Инверторный сварочный выпрямитель: разбираем, что к чему

Схема работы инверторного аппарата немного другая, чем у классического. Вместо понижающего трансформатора у него на входе устанавливается электронный фильтр, который преобразует частоту входящего электрического тока с 50 Гц до нескольких десятков кГц. После устанавливается понижающий трансформатор, а уже потом выпрямительный мост. Достоинства таких сварочных аппаратов в малом весе, по сравнению с обычными. Это достигается за счет того, что магнитопровод высокочастотного трансформатора имеет меньшие массогабаритные показатели.

Выпрямители инверторных сварочных аппаратов строятся на базе тиристоров, с системой импульсно фазового управления. Далее, как и положено, в цепь сварки, параллельно нагрузке, подключают конденсатор, а перед сварочным электродом – реостат и дроссель. Недостаток рассматриваемых выпрямителей – в количестве электроники, собрать его самому почти невозможно, как и починить. Однопостовые сварочные выпрямители с хорошими показателями выпрямленного тока при наличии всех необходимых компонентов можно собирать у себя дома, и это достойная альтернатива покупке нового выпрямителя.

Как сделать сварочный выпрямитель своими руками

Автор: Игорь

Дата: 16.03.2019

  • Статья
  • Фото
  • Видео

Несмотря на то, что электрическое оборудование является одним из самых сложных по своей конструкции, многими мастерами изготавливается выпрямитель для сварочного аппарата своими руками. Кроме хорошо оборудованной мастерской, необходимы знания в электротехнике. Современные реалии таковы, что можно воспользоваться уже готовыми схемами, а также советами по подбору диодов и других элементов.

Самодельные приборы могут изготавливаться как для однофазной, так и для 3-фазной сети. Во втором случае требуются более мощные диоды для выпрямительного моста и система охлаждения.

Устройство сварочного выпрямителя

Важно! Для самостоятельного изготовления выпрямителя можно не использовать трансформатор, а подключать его напрямую к сети

Если объяснять простыми словами, что представляет собой сварочный выпрямитель — это устройство, которое преобразует переменный ток в постоянный. В сварочных работах последний вид тока обеспечивает большую мощность и стабильность дуги. Но поскольку в сети используется только переменный, то необходимо устройство, которое будет его преобразовывать.

Схематическое устройство сварочного выпрямителя

Само устройство довольно требовательно к расчетным данным, но принцип его работы достаточно понятен. Входящий ток поступает на первичную обмотку понижающего трансформатора. За счет электромагнитной индукции на вторичной обмотке появляется электрический ток, но с другими параметрами. Будет понижено напряжение, и повышена сила тока. Следующий этап — трансформация. Это именно то, для чего конструируются выпрямители.

Происходит это вследствие прохождения синусоиды переменного тока через систему диодов. Суть его работы заключается в следующем: переменный ток проходит через выпрямитель. При движении синусоиды вверх диод пропускает поток электронов, но при изменении направления (прохождении через ноль) блокирует движение. На выходе из выпрямителя направленный поток электронов образуется только в одну сторону.

Наиболее практично сделать сварочный выпрямитель на тиристорах своими руками. Не использовать простые диоды, а сконструировать более сложную цепь, используя конденсаторы, тиристоры. Явным плюсом окажется более точная и гибкая настройка силы тока. Мощный трансформатор, который можно задействовать для конструкции, — можно извлечь из б/у микроволновки.

Самодельный сварочный выпрямитель для однофазной сети

Чтобы понять, что представляют собой функциональные блок-схемы сварочных выпрямителей, стоит начать с того, что внешние характеристики могут быть падающими или жесткими, в зависимости от типа электрода.

Его принципиальная схема состоит из 2 обязательных элементов: трансформатора, тиристорной схемы (сюда же входит компенсатор). Вторая может быть 2 типов: из управляемых тиристоров Vy и диодная неуправляемая Vн. В линейном блоке находится сглаживающий дроссель Lc. Этот компонент призван снизить скорость нарастания тока до максимальных значений при появлении сварочной дуги. Эта защита выполняет роль индуктивного фильтра, не допуская разбрызгивания металла из сварочной ванны.

Трансформатор понижающий формирует внешние характеристики и регулирует режим работы. Из-за низкой стабильности выходного тока у однофазных однополупериодных выпрямителей преимущественно применяются 2-полупериодные схемы, которые пропускают верхние и нижние части волн.

Читайте также:
Гортензия метельчатая Фрайз Мельба: описание и фото, чтобы оценить красоту Fraise Melba

Выбор конденсатора основывается на 2 характеристиках: емкости (чем она выше, тем меньше пульсация) и напряжении (должно превышать амплитудное как минимум в 2 раза).

Сварочный выпрямитель для трехфазной сети

В домашних условиях можно сделать выпрямитель для 3-фазной сети. Для этого используется схема сварочного выпрямителя имени Мицкевича. Она включает в себя 3 соединенных диода с выходом на конденсатор. Но эта схема имеет недостатки 1-фазного однополупериодного выпрямителя — нестабильность тока. Она неуправляемая, с уже заданными точными характеристиками тока.

Этот недостаток компенсирует вторая схема Ларионова. В ней используются 2-полупериодные схемы на каждую фазу. В этом случае потери тока минимизированы почти вдвое, есть возможность управления такими параметрами, как сила тока на выходе.

Инверторный сварочный выпрямитель

Инверторный выпрямитель представляет функциональный прибор в отличие от простого аналога. Он способен трансформировать переменный ток в прямой, а также отключать эту функцию и работать с переменным. В зависимости от используемых тиристоров, есть возможность менять частоту тока, уменьшать или увеличивать силу тока и напряжение. Использование выпрямителя ограничено и затратно: обычно такие устройства применяются в промышленных масштабах. Поэтому для бытового использования лучше предпочесть инвертор.

Особенности применения и меры безопасности при работе

Важно! При первичном включении необходимо использовать меры безопасности на случай короткого замыкания

Основы безопасности работы с электричеством связаны с его эксплуатацией. В то же время, работая над схемами, никто не застрахован от неправильных действий, применения элементов, не соответствующих указанным параметрам, а также использования ошибочных схем или допущения собственных ошибок. В связи с этим при проверке работоспособности устройства нужно придерживаться следующих правил:

  • Включение новых схем проводить, максимально обезопасив себя от воздействия поражения электричеством. Перед включением установить сборку в емкость, сделанную из диэлектрического материала, отойти на расстояние не менее 1-1,5 метров и только после этого опробовать работоспособность системы.
  • При работе с конденсаторами нового поколения важно помнить, что при несоответствии рабочего напряжения может произойти предусмотренная производителем разгерметизация. В результате КЗ возникает задымление, вредное для глаз.
  • Стабилизирующий блок питания. Входное напряжение стабилизаторов должно превышать выходную величину минимум на 1,5 В.
  • Транзисторы и стабилизаторы желательно устанавливать на разные радиаторы, поскольку каждый из них выделяет большое количество тепла.
Заключение

Зная, как сделать выпрямитель на 12 Вольт своими руками, можно изготовить для собственного использования устройство, которое будет полезным не только для сварки, но и во многих домашних приборах, освещении, зарядниках для автомобильных аккумуляторов, аудиоаппаратуры. Выпрямитель может работать как от сети, так и от вторичной обмотки трансформатора. Единственный недостаток схем, используемых для бытового применения, — невысокий КПД.

Выпрямитель сварочный – как рассчитать и собрать своими руками?

Диод – это полупроводниковый прибор, который обладает различной проводимостью в зависимости от прикладываемого напряжения. Имеет всего два вывода: анод и катод. При подаче прямого напряжения (на анод подается положительный потенциал по сравнению с катодом) он открыт. При подаче отрицательного напряжения он закрывается.

Эта особенность прибора широко используется в электротехнике, в частности диодный мост применяют для сварочного аппарата, чтобы выпрямлять переменный ток, улучшая качество сварки.

Основные характеристики

Главными параметрами, на которые обращают внимание при выборе выпрямителей для сварочных аппаратов, являются:

  • максимально допустимое постоянное обратное напряжение;
  • максимальный средний прямой ток за период;
  • рабочая частота переключения;
  • постоянное прямое напряжение при максимальном прямом токе;
  • максимально допустимая температура корпуса.

Амплитуда бытовой сети составляет около 310 В, поэтому нужно использовать диоды с обратным напряжением 400 В и выше. Прямой ток жестко связан с мощностью прибора, и на него также обращают внимание. Рабочая частота показывает, в каком выпрямителе можно использовать полупроводник, применять его в сетевом или выходном блоке инвертора.

Прямое напряжение полупроводника характеризует мощность рассеяния на самом приборе. Это позволяет рассчитать размеры радиатора или системы охлаждения. Предельная температура корпуса сварочного аппарата дает возможность предусмотреть схему защиты от перегрева.

Применение в сварке

В любом трансформаторном сварочном аппарате постоянного тока или инверторе присутствуют силовые диоды. Они предназначены для выпрямления переменного тока. Для повышения коэффициента полезного действия диоды подключают по мостовой схеме, в этом случае оба полупериода приходятся на нагрузку.

В трансформаторном сварочном аппарате выпрямительные диоды устанавливают на выходе вторичной обмотки. Сварочное оборудование имеет понижающий трансформатор, соответственно, напряжение холостого хода значительно ниже входного, поэтому здесь требуются приборы большой мощности и низкой частоты. Для этого подойдут выпрямительные диоды В200 (максимальный ток 200А).


Для сварочного инвертора требуется два выпрямителя. Один располагается на входе источника питания. Он преобразует переменный ток 220 вольт 50 Гц в постоянный, который преобразуется в дальнейшем в переменный ток высокой частоты (40-80 кГц).

При мощности аппарата 5 кВт выпрямительные диоды должны иметь обратное напряжение 600-1000 В и средний прямой ток 25-35 А при частоте 50 Гц.

Второй выпрямитель располагается после высокочастотного трансформатора. Здесь требования другие. Максимальный прямой ток должен быть не менее 200 А на частоте 80 кГц, а обратное напряжение превышать напряжение холостого хода (60-70 В).

В любом случае используются диоды из категории мощных, с площадкой для монтажа радиатора, поскольку без отведения тепла устройство быстро сгорит.

Применение на практике

Для примера, рассмотрим инверторный аппарат TELWIN Force 165. Во входном выпрямителе используются диодные сборки GBPC3508. Выпрямительный мост GBPC3508 может работать с током 35 А, обратное напряжение – 800 В.

С ним вместе идет обязательно сглаживающий фильтр из конденсаторов большой емкости. Кроме этого имеется фильтр электромагнитной совместимости, который не пропускает помехи от инвертора в бытовую сеть.

На выходе инвертора используются мощные сдвоенные диоды с общим катодом. Они имеют высокое быстродействие в отличие от диодов расположенных на входе устройства.

Благодаря малому времени восстановления, менее 50 наносекунд, приборы успевают переключать высокочастотный ток на выходе вторичной обмотки.

В данном приборе используются сдвоенные диоды марок STTH6003CW, FFH30US30DN или VS-60CPH03, рассчитаны на прямой ток 30 ампер на один прибор (60 ампер на оба) и обратное напряжение 300 вольт.

Устанавливаются на радиатор. Для защиты полупроводников от перегрузки используется RC фильтр. Схема управления требует стабильный источник питания без бросков напряжения.

Для этого в приборе предусмотрены стабилитроны или уже готовый интегральный стабилизатор, которые обеспечивают стабильное питание на микросхемах управления. В результате получается компактное устройство, позволяющее качественно варить металл.

Особенность выпрямителей


Выпрямитель для сварочного аппарата выполняется по мостовой схеме. При изготовлении сварочного аппарата своими руками и применении диодов В200 нужно учитывать, что их корпус находится под напряжением.

Поэтому когда выпрямитель устанавливают на радиатор, он должен быть изолирован от остальных элементов схемы, от корпуса прибора и от соседних диодов тоже. А это создает определенные неудобства для сварщика.

Читайте также:
Варианты и нюансы соединения многожильных и одножильных проводов

Приходится использовать более крупный корпус. Для уменьшения габаритов аппарата применяют выпрямительный прибор ВЛ200, который имеет другую полярность. Это позволяет объединить полупроводники на два парных радиатора.

В последние годы стали выпускать довольно мощные диодные мосты в одном корпусе. По размерам такая конструкция из диодов примерно соответствует спичечному коробку, имеет площадку для посадки радиатора, максимальный прямой ток 30-50 А. Диодная сборка имеет значительно меньшую стоимость по сравнению с диодами В200.

Если по работе устройства требуется более мощный мост, то эту проблему можно легко решить, используя параллельное подключение мостовых сборок. Однако их надежность в таком случае будет ниже, чем у одиночных мощных диодов.

Виды аппаратов, их особенности

Сварочный выпрямитель своими руками

Самодельный сварочный выпрямитель нужен для эффективного питания бытовой конструкции или производственной с небольшими объёмами работ и рабочих циклов.

В промышленности применяют более мощную аппаратуру, действия с ней, не образуют пауз во время сварки.

В этот период происходит остывание раскалённых деталей, снижается скорость выполнения процедуры, что не мешает для домашних приспособлений.

Эти изделия состоят из элементов:

  • трансформатора
  • конденсаторного блока
  • выпрямителя

Приступая к созданию сварочного прибора мастеру нужно определиться с направлением работ, их размерами.

От объема производства, количества соединений зависят:

  • подбор нужных электродов
  • системные параметры
  • материальная характеристика

Сборщик, подобрав нужную схему и материалы, выполнив поэтапно сборку аппарата, добьётся необходимых показателей в системе.

Установка


При использовании параллельной схемы соединения диодных мостов необходимо учитывать, что все они имеют некоторый разброс по параметрам.

Поэтому при подборе элементов необходимо делать это с некоторым запасом прочности. При соблюдении этого требования для сварочного аппарата можно получить диодный мост более компактный, чем при использовании одиночных диодов.

Диодные сборки позволяют размещать их на одном радиаторе, так как корпусы не находятся под напряжением. Это позволяет монтировать их в любом месте, и даже снаружи.

В зависимости от требуемого сварочного тока для выпрямителя могут потребоваться от 3 до 5 диодных сборок. Для лучшей теплоотдачи диодные мосты устанавливаются на радиатор через теплопроводящую пасту.

К контактам проводники рекомендуется подсоединяться пайкой, в противном случае могут быть потери мощности в месте контакта и его сильный нагрев.

Ремонтируем сварочный аппарат TELWIN Force 165

Здесь будет рассмотрен ремонт сварочного инвертора TELWIN Force 165. Для тех, кто не знаком с устройством и схемотехникой сварочного инвертора, предлагаем сначала ознакомиться с материалами на эту тему, а именно:
В этих двух статьях на примере реального аппарата TELWIN Force 165 и принципиальной схемы сварочных инверторов TELWIN Tecnica 144-164 подробно описана электронная начинка и назначение каждого элемента схемы.

Но давайте вернёмся к нашему неисправному аппарату – сварочному инвертору TELWIN Force 165. По словам владельца, аппарат исправно работал, но вдруг, после небольшой передышки в работе напрочь отказывался выполнять свои обязанности. При попытке начать работу искра не появлялась, а изнутри корпуса доносился неестественный для штатной работы «гул» и «писк».

По словам владельца также было известно, что аппарат вроде как работал – был слышен шум вентилятора обдува, включался индикатор штатной работы. А это свидетельствует о том, что транзисторы инвертора исправны.

Складывалось впечатление, что сварочный инвертор «уходит в защиту» – срабатывают внутренние защитные цепи, которые есть в составе любого импульсного агрегата, тем более такого мощного.

Поиск неисправности сварочного инвертора я начал нестандартно. Включать приборчик не стал.

Ранее я с такими приборами не сталкивался, и они были для меня в новинку. Поэтому первым делом вскрыл корпус и стал проверять мультиметром все доселе известные мне детали.

На печатной плате сварочного инвертора обнаружил знакомые элементы: вентилятор, мощный диодный мост (на него установлен радиатор), высоковольтные электролитические конденсаторы фильтра, фильтр EMC, ключевые мощные транзисторы инвертора (установлены на радиатор), импульсный трансформатор, электромагнитное реле…

Неприятным сюрпризом оказалось то, что поверхность печатной платы была залита каким-то лаком, который затруднял считывание маркировки SMD-элементов и микросхем.

Также были обнаружены защитные элементы. Один из них – термопредохранитель на 90 0 С. Он приклеен к радиатору диодного моста.

Насколько мне известно, такие термопредохранители срабатывают намертво, то есть если нагреются выше своей температуры срабатывания, то размыкаются навсегда. Похожие термопредохранители можно обнаружить в силовых трансформаторах. Там они включаются в цепь первичной обмотки и приклеиваются к ней. Защищают трансформатор от перегрева. Иногда можно ложно судить о том, что первичная обмотка трансформатора в обрыве, хотя стоит убрать (или замкнуть накоротко) этот самый термопредохранитель, как оказывается, что трансформатор исправен.

Поэтому первым делом проверил целостность термопредохранителя на 90 0 С. Он оказался исправен.

Кроме этого на одном из радиаторов, к которым крепятся мощные ключевые транзисторы инвертора, также есть температурный датчик. Внешне он очень похож на термовыключатель серии KSD, которые используются в термопотах, водяных нагревателях и прочей бытовой электротехнике.

Особенность этих термовыключателей в том, что их контакты вновь замыкаются, если температура опустится ниже определённого значения. Понятно, что этот температурный датчик отслеживает нагрев мощных ключевых транзисторов и, если есть перегрев, временно отключает работу сварочного инвертора. Как только радиаторы, а, следовательно, и транзисторы остынут, то аппарат вновь запустится, и будет работать в штатном режиме.

При проверке термовыключателя оказалось, что он также исправен. Ну, что ж, будем искать неисправность дальше.

После недолгих поисков, было решено проверить мощные выпрямительные диоды. На печатной плате они расположены рядком и надёжно прикручены к радиатору шурупами. На страницах сайта уже рассказывалось о том, как проверить диод.

Маркированы как 60CPH03. Это ультрабыстрые сдвоенные диоды VS-60CPH03.

После проверки оказалось, что ориентировочно неисправны все три сдвоенных диода. Но это всего лишь предположение, так как диоды впаяны в схему, и 100% утверждать, что именно они неисправны нельзя. Несмотря на это стало понятно, в каком направлении нужно «копать» дальше.

Разобраться в проблеме можно было бы и без схемы, но с ней интересней, тем более что под рукой оказалось руководство по ремонту сварочных инверторов TELWIN Tecnica 144-164, которые, честно говоря, мало чем отличаются по своему составу и схемотехнике от TELWIN Force 165. Если взглянуть на принципиальную схему, то можно заметить, что даже при пробое одного из сдвоенных диодов 60CPH03, все остальные диоды при проверке будут также «неисправными», если их не выпаять из платы и не проверить каждый в отдельности. Вот кусочек схемы – выходной выпрямитель.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Foundation-Stroy.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: