Выпрямитель напряжения: классификация, применение, схема выпрямителя

Разновидности и принцип работы выпрямителей напряжения

Исторически сложилось, что электроэнергию выгоднее и дешевле получать в виде переменного тока, вырабатываемого генераторами силовых станций. Такое представление позволяло эффективно передавать ее на огромные расстояния. На приемном конце она преобразовывалась в удобное для потребителей однофазное напряжение и в этом виде поступала в линию питания. Однако внутренние схемы большинства современных электроприемников нуждаются в постоянном питании, величина которого выбирается из стандартного ряда значений 5, 9, 12, 24, 36 или 48 Вольта. Для их получения в схему электронных приборов пришлось вводить специальный выпрямитель напряжения (на 24 Вольта, например).

  1. Принцип работы выпрямителя
  2. Виды выпрямителей
  3. Типы выпрямителей по функциональным возможностям
  4. Основные соотношения при расчете выпрямителя

Принцип работы выпрямителя

Для ясного понимания принципа работы выпрямителя постоянного тока сначала придется учесть, что для выпрямления переменного напряжения применяют полупроводниковые элементы (диоды). Их отличительной особенностью является возможность проводить ток только в одну сторону. Благодаря этому свойству, подаваемое на них переменное напряжение на выходе будет иметь вид положительных пульсаций со срезанными нижними половинками полупериода колебаний. При положительных полуволнах через диод будет протекать ток, являющийся основой для формирования постоянного питания. Для его получения необходимы дополнительные электрические элементы.

Устройство выпрямительного диода

Любой выпрямитель тока имеет в своем составе следующие основные узлы:

  • Понижающий трансформатор, преобразующий 220 Вольт в нужную величину;
  • набор из диодов (мостик);
  • сглаживающий (фильтрующий) конденсатор;
  • стабилизатор, выполненный на основе транзисторных элементов.

Известно множество вариантов электронных выпрямителей, отличающихся числом и способом подсоединения диодов, а также своими рабочими параметрами. Особый интерес представляют различные подходы к включению в схему диодных элементов. Стабилизирующий каскад выпрямительного устройства собирается на транзисторных ключах, называемых электронными реле.

Виды выпрямителей

Схема однофазного выпрямителя

В зависимости от способа включения полупроводниковых диодов все выпрямители переменного тока подразделяются на следующие виды:

  • однополупериодные (полуволновые);
  • двухполупериодные (полноволновые со средней точкой или схемы Миткевича);
  • мостовые или выпрямители Гретца;
  • выпрямители с удвоением рабочего напряжения и другие, менее распространенные схемы.

График выходного напряжения

Однополупериодное включение – самые простой способ, используемый для выпрямления переменного тока. Другое название – нулевая выпрямительная схема.

С помощью устройств этого класса удается получить только пульсирующий (используемый лишь наполовину) выходной ток. Схемы, построенные на однополупериодном принципе, отличаются низкой эффективностью преобразования и применяются крайне редко. Их двухполупериодные аналоги имеют в своем составе два диода и обеспечивают выпрямление полуволн обеих полярностей. Они отличаются большей эффективностью и применяются в простейших блоках питания.

Однофазные мостовые выпрямители, так называемые схемы Гретца на 4-х диодах, характеризуются высоким КПД, под которым понимается эффективность использования полученной от трансформатора мощности.

Напряжение на выходе полупроводниковых выпрямительных мостов является хорошей основой для последующего сглаживания и стабилизации — получения постоянного тока.

Они широко применяются в устройствах повышенной энергоемкости типа генераторов с выходными напряжениями от десятков до сотен Вольт. К их достоинствам относят:

  • низкое обратное напряжение (доли Вольта);
  • небольшие габариты;
  • высокий КПД использования трансформатора (в сравнение со схемой Миткевича).

Существенный недостаток мостовых схем – в два раза большее падение напряжения на диодах, что вынуждает при их разработке выбирать выходные параметры трансформатора с запасом. Эта часть полезной мощности теряется затем на переходах четырех диодов.

Типы выпрямителей по функциональным возможностям

Мостовой трехфазный выпрямитель

По своему назначению и функциональным возможностям известные образцы выпрямителей делятся на однофазные и трехфазные устройства. Первые используются в электросетях многоквартирных и частных домов и предназначены для питания бытовой аппаратуры. Вторые представляют собой электронный модуль из 3-х однотипных узлов, изготавливаемых по одной из следующих схем:

  • однотактные выпрямители;
  • двухтактные системы;
  • комбинированные модули: с двумя трехфазными обмотками с параллельным и последовательным включением диодов.

Схема выпрямителя с удвоением напряжения лишь деталями отличается от уже рассмотренных вариантов. Такие устройства принято называть умножителями, которые легко собираются своими руками.

Основные соотношения при расчете выпрямителя

Для расчета 2-хполупериодного выпрямителя, выбранного в качестве примера, потребуется знать следующие исходные данные:

  • входное напряжение, действующее во вторичной обмотке трансформатора;
  • ток в диодах, протекающий в цепи с учетом нагрузки;
  • емкость электролитического конденсатора, выбираемая, исходя из заданного коэффициента сглаживания пульсаций;
  • максимальное напряжение на нем.

Важно учитывать падение напряжения на твердотельных диодах, находящихся в открытом состоянии.

Расчетные соотношения для этого случая представляются в следующем виде.

  • Ток в обмотке трансформатора по величине равен максимальному его значению в нагрузке (Iобм= Iнагр).
  • Напряжение во вторичной обмотке в режиме холостого хода составляет U2≈ 0,75Uнагр.
  • Выпрямительные диоды рекомендуется брать со следующими параметрами: Uобр > 3,14Uнагр, а Iмакс > 1,57Iнагр.

Выпрямители широко применяются в самых различных областях электротехники и электроники, включая современные системы управления. Поэтому так важно разобраться с тем, что такое выпрямители тока и какие их разновидности используются при построении самых эффективных схем.

Ликбез КО. Лекция №1 Схемы выпрямления электрического тока.

Схемы выпрямления электрического тока.
Выпрямитель электрического тока – электронная схема, предназначенная для преобразования переменного электрического тока в постоянный (однополярный) электрический ток.

Читайте также:
Арболитовые блоки (32 фото): что это такое? Размеры, вес и другие характеристики одного блока. Достоинства и недостатки, виды и отзывы владельцев

В полупроводниковой аппаратуре выпрямители исполняются на полупроводниковых диодах. В более старой и высоковольтной аппаратуре выпрямители исполняются на электровакуумных приборах – кенотронах. Раньше широко использовались – селеновые выпрямители.

Для начала вспомним, что собой представляет переменный электрический ток. Это гармонический сигнал, меняющий свою амплитуду и полярность по синусоидальному закону.

В переменном электрическ.

Схемы выпрямления электрического тока.
Выпрямитель электрического тока – электронная схема, предназначенная для преобразования переменного электрического тока в постоянный (однополярный) электрический ток.

В полупроводниковой аппаратуре выпрямители исполняются на полупроводниковых диодах. В более старой и высоковольтной аппаратуре выпрямители исполняются на электровакуумных приборах – кенотронах. Раньше широко использовались – селеновые выпрямители.

Для начала вспомним, что собой представляет переменный электрический ток. Это гармонический сигнал, меняющий свою амплитуду и полярность по синусоидальному закону.

В переменном электрическом токе можно условно выделить положительные и отрицательные полупериоды. Всё то, что больше нулевого значения относится к положительным полупериодам (положительная полуволна – красным цветом), а всё, что меньше (ниже) нулевого значения – к отрицательным полупериодам (отрицательная полуволна – синим цветом).

Выпрямитель, в зависимости от его конструкции «отсекает», или «переворачивает» одну из полуволн переменного тока, делая направление тока односторонним.

Схемы построения выпрямителей сетевого напряжения можно поделить на однофазные и трёхфазные, однополупериодные и двухполупериодные.

Для удобства мы будем считать, что выпрямляемый переменный электрический ток поступает с вторичной обмотки трансформатора. Это соответствует истине и потому, что даже электрический ток в домашние розетки квартир домов приходит с трансформатора понижающей подстанции. Кроме того, поскольку сила тока – величина, напрямую зависящая от нагрузки, то при рассмотрении схем выпрямления мы будем оперировать не понятием силы тока, а понятием – напряжение, амплитуда которого напрямую не зависит от нагрузки.

На рисунке изображена схема и временная диаграмма выпрямления переменного тока однофазным однополупериодным выпрямителем.

Из рисунка видно, что диод отсекает отрицательную полуволну. Если мы перевернём диод, поменяв его выводы – анод и катод местами, то на выходе окажется, что отсечена не отрицательная, а положительная полуволна.

Среднее значение напряжения на выходе однополупериодного выпрямителя соответствует значению:
Uср = Umax / π = 0,318 Umax

где: π – константа равная 3,14.
Однополупериодные выпрямители используются в качестве выпрямителей сетевого напряжения в схемах, потребляющих слабый ток, а также в качестве выпрямителей импульсных источников питания. Они абсолютно не годятся в качестве выпрямителей сетевого напряжения синусоидальной формы для устройств, потребляющих большой ток.

Наиболее распространёнными являются однофазные двухполупериодные выпрямители. Существуют две схемы таких выпрямителей – мостовая схема и балансная.

Рассмотрим мостовую схему однофазного двухполупериодного выпрямителя и его работу.

Если ток вторичной обмотки трансформатора течёт по направлению от точки «А» к точке «В», то далее от точки «В» ток течёт через диод VD3 (диод VD1 его не пропускает), нагрузку Rн, диод VD2 и возвращается в обмотку трансформатора через точку «А». Когда направление тока вторичной обмотки трансформатора меняется на противоположное, то вышедший из точки «А», ток течёт через диод VD4, нагрузку Rн, диод VD1 и возвращается в обмотку трансформатора через точку «В».

Таким образом, практически отсутствует промежуток времени, когда напряжение на выходе выпрямителя равно нулю.

Рассмотрим балансную схему однофазного двухполупериодного выпрямителя.

По своей сути это два однополупериодных выпрямителя, подключенных параллельно в противофазе, при этом начало второй обмотки соединено с концом первой вторичной обмотки. Если в мостовой схеме во время действия обоих полупериодов сетевого напряжения используется одна вторичная обмотка трансформатора, то в балансной схеме две вторичных обмотки (2 и 3) используются поочерёдно.

Среднее значение напряжения на выходе двухполупериодного выпрямителя соответствует значению:
Uср = 2*Umax / π = 0,636 Umax

Читайте также:
Армирование перемычек над окнами

где: π – константа равная 3,14.
Представляет интерес сочетание мостовой и балансной схемы выпрямления, в результате которого, получается двухполярный мостовой выпрямитель, у которого один провод является общим для двух выходных напряжений (для первого выходного напряжения, он отрицательный, а для второго – положительный):

Трёхфазные выпрямители

Трёхфазные выпрямители обладают лучшей характеристикой выпрямления переменного тока – меньшим коэффициентом пульсаций выходного напряжения по сравнению с однофазными выпрямителями. Связано это с тем, что в трёхфазном электрическом токе синусоиды разных фаз «перекрывают» друг друга. После выпрямления такого напряжения, сложения амплитуд различных фаз не происходит, а выделяется максимальная амплитуда из значений всех трёх фаз входного напряжения.

На следующем рисунке представлена схема трёхфазного однополупериодного выпрямителя и его выходное напряжение (красным цветом), образованное на «вершинах» трёхфазного напряжения.

За счёт «перекрытия» фаз напряжения, выходное напряжение трёхфазного однополупериодного выпрямителя имеет меньшую глубину пульсации. Вторичные обмотки трансформатора могут быть использованы только по схеме подключения «звезда», с «нулевым» выводом от трансформатора.

На следующем рисунке представлена схема трёхфазного двухполупериодного мостового выпрямителя (схема Ларионова) и его выходное напряжение (красным цветом).

За счёт использования положительной и перевернутой отрицательной полуволны трёхфазного напряжения, выходное напряжение (выделено красным цветом), образованное на вершинах синусоид, имеет самую маленькую глубину пульсаций выходного напряжения по сравнению со всеми остальными схемами выпрямления. Вторичные обмотки трансформатора могут быть использованы как по схеме подключения «звезда», без «нулевого» вывода от трансформатора, так и «треугольник».
При конструировании блоков питания для выбора выпрямительных диодов используют следующие параметры, которые всегда указаны в справочниках:

– максимальное обратное напряжение диода – Uобр ;

– максимальный ток диода – Imax ;

– прямое падение напряжения на диоде – Uпр .

Необходимо выбирать все эти перечисленные параметры с запасом, для исключения выхода диодов из строя.

Максимальное обратное напряжение диода Uобр должно быть в два раза больше реального выходного напряжения трансформатора. В противном случае возможен обратный пробой p-n, который может привести к выходу из строя не только диодов выпрямителя, но и других элементов схем питания и нагрузки.

Значение максимального тока Imax выбираемых диодов должно превышать реальный ток выпрямителя в 1,5 – 2 раза. Невыполнение этого условия, также приводит к выходу из строя сначала диодов, а потом других элементов схем.

Прямое падение напряжения на диоде – Uпр, это то напряжение, которое падает на кристалле p-n перехода диода. Если по пути прохождения тока стоят два диода, значит это падение происходит на двух p-n переходах. Другими словами, напряжение, подаваемое на вход выпрямителя, на выходе уменьшается на значение падения напряжения.

Схемы выпрямителей предназначены для преобразования переменного – изменяющего полярность напряжения в однополярное – не изменяющее полярность. Но этого недостаточно для превращения переменного напряжения в постоянное. Для того, чтобы оно преобразовалось в постоянное необходимо применение сглаживающих фильтров питания, устраняющих резкие перепады выходного напряжения от нуля до максимального значения.

Что такое выпрямитель напряжения и для чего нужен: типовые схемы выпрямителей

Электрическую энергию удобно транспортировать и преобразовывать по величине в виде переменного напряжения. Именно в таком виде она подается к конечному потребителю. Но для питания многих устройств нужно все-таки постоянное напряжение.

Для чего нужен выпрямитель в электротехнике

Задача преобразования переменного напряжения в постоянное возложена на выпрямители. Это устройство широко применяется, и главные сферы использования выпрямляющих устройств в радио- и электротехнике:

  • формирование постоянного тока для силовых электроустановок (тяговые подстанции, электролизные установки, системы возбуждения синхронных генераторов) и мощных двигателей постоянного тока;
  • источники питания для электронных приборов;
  • детектирование модулированных радиосигналов;
  • формирование постоянного напряжения, пропорционального уровню входного сигнала, для построения систем автоматической регулировки усиления.

Полная область применения выпрямителей обширна, и перечислить её в рамках одного обзора невозможно.

Принципы работы выпрямителей

В основу работы выпрямительных устройств положено свойство односторонней проводимости элементов. Делать это можно разными способами. Многие пути для промышленного применения отошли в прошлое – например, применение механических синхронных машин или электровакуумных приборов. Сейчас применяются вентили, проводящие ток в одну сторону. Не так давно для мощных выпрямителей применялись ртутные устройства. На сегодняшний момент они практически вытеснены полупроводниковыми (кремниевыми) элементами.

Типовые схемы выпрямителей

Выпрямляющее устройство может быть построено по различным принципам. Анализируя схемы устройств, надо помнить, постоянным напряжение на выходе любого выпрямителя можно назвать лишь условно. Этот узел выдает пульсирующее однонаправленное напряжение, которое в большинстве случаев надо сглаживать фильтрами. Часть потребителей требует еще и стабилизации выпрямленного напряжения.

Читайте также:
Как выращивать озимый чеснок

Однофазные выпрямители

Самым простым выпрямителем переменного напряжения служит одиночный диод.

Он пропускает к потребителю положительные полуволны синусоиды и «срезает» отрицательные.

Область применения такого устройства невелика – в основном, выпрямители импульсных блоков питания, работающих на относительно высоких частотах. Хотя оно и выдает ток, текущий в одном направлении, у него есть существенные недостатки:

  • высокий уровень пульсаций – для сглаживания и получения постоянного тока потребуется большой и громоздкий конденсатор;
  • неполное использование мощности понижающего (или повышающего) трансформатора, ведущее к увеличению потребных массогабаритных показателей;
  • средняя ЭДС на выходе составляет меньше половины подведенной ЭДС;
  • повышенные требования к диоду (с другой стороны – нужен всего один вентиль).

Поэтому большее распространение получила двухполупериодная (мостовая) схема.

Здесь ток через нагрузку течёт дважды за период в одном направлении:

  • положительная полуволна по пути, обозначенному красными стрелками;
  • отрицательная полуволна по пути, обозначенному зелеными стрелками.

Отрицательная волна не пропадает, а также используется, поэтому мощность входного трансформатора используется полнее. Средняя ЭДС в два раза больше, чем у однополупериодного варианта. Форма пульсирующего тока гораздо ближе к прямой, но сглаживающий конденсатор все же потребуется. Его ёмкость и габариты будут меньше, чем в предыдущем случае, потому что частота пульсаций составляет удвоенную частоту сетевого напряжения.

Если есть трансформатор с двумя одинаковыми обмотками, которые можно соединить последовательно или с обмоткой, имеющей отвод от середины, двухполупериодный выпрямитель можно построить по другой схеме.

Этот вариант фактически является удвоенной схемой однополупериодного выпрямителя, но обладает всеми достоинствами двухполупериодного. Недостатком является необходимость применения трансформатора специфической конструкции.

Если трансформатор изготавливается в любительских условиях, нет препятствий намотать вторичную обмотку так, как требуется, но придется применить железо несколько увеличенных размеров. Зато вместо 4 диодов используется только 2. Это позволит скомпенсировать проигрыш в массогабаритных показателях, и даже выиграть.

Если выпрямитель рассчитан на большой ток и вентили надо устанавливать на радиаторах, то установка в два раза меньшего количества диодов дает существенную экономию. Ещё надо учитывать, что такой выпрямитель имеет вдвое большее внутреннее сопротивление, по сравнению с собранным по мостовой схеме, поэтому нагрев обмоток трансформатора и связанные с этим потери также будут выше.

Трёхфазные выпрямители

От предыдущей схемы логично перейти к выпрямителю трехфазного напряжения, собранного по подобному принципу.

Форма выходного напряжения гораздо ближе к прямой линии, уровень пульсаций всего 14%, а частота равна утроенной частоте сетевого напряжения.

И все же исходник этой схемы – однополупериодный выпрямитель, поэтому многие недостатки не удается изжить даже с помощью трехфазного источника напряжения. Главным из них является не полное использование мощности трансформатора, и средняя ЭДС равна 1,17⋅E2eff (эффективное значение ЭДС вторичной обмотки трансформатора).

Лучшие параметры имеет мостовая трёхфазная схема.

Здесь амплитуда пульсаций выходного напряжения составляет те же 14%, но частота равна ушестеренной частоте входного переменного напряжения, поэтому ёмкость фильтрующего конденсатора будет наименьшей из всех представленных вариантов. А выходная ЭДС будет вдвое выше, чем в предыдущей схеме.

Этот выпрямитель применен с выходным трансформатором, имеющим вторичную обмотку по схеме «звезда», но тот же самый узел вентилей будет гораздо менее эффективен при использовании совместно с трансформатором, выход которого включен по схеме «треугольника».

Здесь амплитуда и частота пульсаций такая же, как в предыдущей схеме. Но средняя ЭДС меньше, чем в предыдущей схеме в раз. Поэтому такое включение используется редко.

Выпрямители с умножением напряжения

Можно построить выпрямитель, выходное напряжение которого будет кратно больше входного. Например, существуют схемы с удвоением напряжения:

Здесь конденсатор С1 заряжается во время отрицательного полупериода и включается последовательно с положительной волной входной синусоиды. Недостатком такого построения является невысокая нагрузочная способность выпрямителя, а также то, что конденсатор С2 находится под удвоенным значением напряжения. Поэтому такую схему используют в радиотехнике для выпрямления с удвоением маломощных сигналов для амплитудных детекторов, в качестве измеряющего органа в схемах автоматической регулировки усиления и т.д.

В электротехнике и силовой электронике применяют другой вариант схемы удвоения.

Читайте также:
Внутренняя отделка окон ПВХ своими руками

Удвоитель, собранный по схеме Латура, имеет большую нагрузочную способность. Каждый из конденсаторов находится под входным напряжением, поэтому по массогабаритным показателям этот вариант также выигрывает у предыдущего. Во время положительного полупериода заряжается конденсатор С1, во время отрицательного – С2. Ёмкости включены последовательно, а по отношению к нагрузке – параллельно, поэтому напряжение на нагрузке равно сумме напряжений заряженных конденсаторов . Частота пульсаций равна удвоенной частоте сетевого напряжения, а величина зависит от значения емкостей. Чем они больше, тем меньше пульсации. И здесь надо найти разумный компромисс.

Недостатком схемы считается запрет на заземление одного из выводов нагрузки – один из диодов или конденсаторов в этом случае окажется закороченным.

Эту схему можно каскадировать любое число раз. Так, повторив принцип включения дважды, можно получить схему с учетверением напряжения и т.д.

Первый по схеме конденсатор должен выдерживать напряжение источника питания, остальные – удвоенное напряжение питания. Все вентили должны быть рассчитаны на двойное обратное напряжение. Разумеется, для надежной работы схемы все параметры должны иметь запас не менее 20%.

Если нет подходящих диодов, их можно соединять последовательно — при этом максимально допустимое напряжение кратно увеличится. Но параллельно каждому диоду надо включить выравнивающие резисторы. Это необходимо сделать, потому что в противном случае из-за разброса параметров вентилей обратное напряжение может распределиться между диодами неравномерно. Итогом может стать превышение наибольшего значения для одного из диодов. А если каждый элемент цепочки зашунтировать резистором (их номинал должен быть одинаковым), то и обратное напряжение распределится строго одинаково. Сопротивление каждого резистора должно быть примерно в 10 раз меньше обратного сопротивления диода. В этом случае действие дополнительных элементов на работу схемы будет минимизировано.

Параллельное соединение диодов в этой схеме вряд ли понадобится, токи здесь невелики. Но может пригодиться в других схемах выпрямителей, где нагрузка потребляет серьезную мощность. Параллельное соединение кратно увеличивает допустимый ток через вентиль, но всё портит отклонение параметров. В итоге один диод может взять на себя наибольший ток и не выдержать его. Чтобы этого избежать, последовательно с каждым диодом ставят резистор.

Номинал сопротивления выбирают так, чтобы при максимальном токе падение напряжения на нём составило 1 вольт. Так, при токе в 1 А сопротивление должно быть 1 Ом. Мощность в этом случае должна быть не менее 1 Вт.

В теории увеличивать кратность напряжения можно до бесконечности. На практике следует помнить, что нагрузочная способность таких выпрямителей резко падает с каждым дополнительным каскадом. В итоге можно прийти к ситуации, когда просадка напряжения на нагрузке превысит кратность умножения и сделает работу выпрямителя бессмысленной. Этот недостаток свойственен всем подобным схемам.

Часто такие умножители напряжения выпускаются единым модулем в хорошей изоляции. Подобные приборы применялись, например, для создания высокого напряжения в телевизорах или осциллографах с электронно-лучевой трубкой в качестве монитора. Также известны схемы удвоения с использованием дросселей, но распространения они не получили – намоточные детали сложны в изготовлении и не очень надежны в эксплуатации.

Схем выпрямителей существует достаточно много. Учитывая широкую сферу применения данного узла, важно подойти к выбору схемы и расчету элементов осознанно. Только в этом случае гарантируется долгая и надежная работа.

Что такое диодный мост, принцип его работы и схема подключения

Что такое импульсный блок питания и где применяется

Что такое делитель напряжения и как его рассчитать?

Описание характеристик, назначение выводов и примеры схем включения линейного стабилизатора напряжения LM317

Что такое компаратор напряжения и для чего он нужен

ВЫПРЯМИТЕЛИ

Фото трансформаторный блок питания

Напрямую запитать от 220 вольт, разумеется, мы не можем, напряжение слишком высокое и ток переменный, а для питания электронных устройств почти всегда необходим постоянный ток и более низкое напряжение. Необходим так называемый сетевой адаптер.

Понизить напряжение мы можем с помощью трансформатора, о нем мы поговорим в одной из следующих статей, пока нам достаточно знать, что с помощью трансформатора мы можем понизить или повысить напряжение при переменном токе. Далее нам необходимо сделать из переменного тока постоянный, для этих целей и служит выпрямитель. Существуют три основных типа выпрямителей.

Однополупериодный выпрямитель

Схема однополупериодный выпрямитель

Этот выпрямитель работает только в течение положительного полупериода синусоиды. Это можно видеть на следующем графике:

Читайте также:
Газонная трава - посев в деталях

Выпрямленный ток после однополупериодного выпрямителя

На выходе после диода мы получаем пульсирующее напряжение, нам нужно сделать из него постоянное, то есть из пульсирующего тока получить постоянный. Для этих целей служит электролитический конденсатор большой емкости, подключенный параллельно выходу питания в соответствии с полярностью. На фотографии ниже можно увидеть внешний вид подобного конденсатора:

Электролитический конденсатор большой емкости

Такой конденсатор благодаря большой емкости разряжается в течении отрицательного полупериода синусоиды. Обычно для фильтрации напряжения в выпрямителях применяют электролитические конденсаторы от 2200 микрофарад. В усилителях и других устройствах, где важно чтобы напряжение не проседало при увеличении мощности нагрузки, ставят конденсаторы на большую емкость, чем 2200 микрофарад. Для устройств питающих бытовую аппаратуру обычно конденсаторов такой емкости бывает достаточно. На следующем графике (выделено красным), мы можем видеть, как конденсатор поддерживает напряжение стабильным во время прохождения отрицательной полуволны.

Выпрямленный ток в однополупериодном выпрямителе после конденсатора

Двухполупериодный выпрямитель со средней точкой

Схема двухполупериодный выпрямитель со средней точкой

Для этой схемы необходим трансформатор, с двумя вторичными обмотками. Напряжение на диодах в два раза выше, чем при включении схемы с однополупериодным выпрямителем или при включении мостовой схемы. В этой схеме попеременно работают оба полупериода. В течении положительного полупериода работает одна часть схемы обозначенная В1, во время отрицательного полупериода работает вторая часть схемы обозначенная В2. Эта схема является менее экономичной, чем мостовая схема, в частности у неё более низкий коэффициент использования трансформатора. В этой схеме после диодов получается также пульсирующее напряжение, но частота пульсаций в два раза выше. Что мы и можем видеть на следующем графике:

График двухполупериодного выпрямителя

Двухполупериодный выпрямитель, мостовая схема

Схема двухполупериодный выпрямитель мостовая схема

И наконец, рассмотрим схему мостового выпрямителя, самую распространенную схему, по которой сделана большая часть всех выпущенных трансформаторных блоков питания. Сейчас объясню принцип работы диодного моста:

Диодный мост рисунок

Ток у нас на выходе с трансформатора переменный, а переменный ток, как известно, в течение периода дважды меняет свое направление. Говоря другими словам, конечно же упрощенно, при переменном токе с частотой 50 герц, ток у нас 100 раз в секунду меняет свое направление. То есть сначала он течет от вывода диодного моста под цифрой один, ко второму, потом в течение другой полуволны он течет от вывода под номером два к первому.

Объяснение работы диодного моста

Рассмотрим, что происходит с диодным мостом при подаче напряжения, мы видим, на рисунке обозначен красным путь тока, напрямую пройти к выводу диодного моста соединенного с переменным током не позволит диод, который получается у нас включенный в обратном включении, а в обратном включении, как мы помним, диоды не пропускают ток. Току остается только один путь (выделено на рисунке синим), через нагрузку и через диод уйти в провод соединенный с выводом переменного тока. Когда у нас ток меняет свое направление, то вступает в действие вторая часть диодного моста, которая действует аналогично той, что описал выше. В итоге у нас получается на выходе такой же график напряжения, как и у двухполупериодного выпрямителя со средней точкой:

График мостого выпрямителя

При сборке выпрямителя нужно учитывать полярность на выходе диодного моста, если мы подключим электролитический конденсатор неправильно, то рискуем испортить конденсатор и можно считать, что повезло, если этим все ограничится. Поэтому при сборке диодного моста важно помнить одно правило, плюс на выходе с моста всегда будет в точке соединения 2 катодов диодов, а минус в точке соединения анодов. Встречается и такое обозначение на схемах диодного моста:

Еще одно изображение диодного моста

Диодный мост можно собрать как из отдельных диодов, так и взять специальную сборку из 4 диодов, уже соединенных по мостовой схеме, и имеющий 4 вывода. В таком случае остается только подать переменный ток, идущий обычно с вторичной обмотки трансформатора на два вывода моста, а с оставшихся двух выводов снимать плюс и минус. Обычно на самой детали бывает обозначено, где какой вывод у моста. Так выглядит импортный диодный мост:

Фото импортного диодного моста

На фото далее изображен отечественный диодный мост КЦ405.

Фото диодный мост кц405

Трехфазные выпрямители

Существуют и трехфазные трансформаторы. Обычным однофазным диодным мостом с такого трансформатора не получится на выходе постоянный ток. Конечно, если нагрузка небольшая можно подключиться к одной фазе и к нулевому проводу трансформатора, но экономичным такое решение не назовешь.

Читайте также:
Изделия из холодного фарфора: фото, материал, история, советы

Фото трехфазного трансформатора

Для трехфазного тока существуют специальные схемы выпрямителей, две таких схемы приведены на рисунках ниже. Первая, известная как схема Миткевича, имеет низкий коэффициент габаритной мощности трансформатора. Эта схема применяется при небольших мощностях нагрузки.

Вторая схема, известная как Схема Ларионова, нашла широкое применение в электротехнике, так как имеет лучшие технико-экономические показатели по сравнению со схемой Миткевича.

Схема Ларионова может использоваться как “звезда-Ларионов” и “треугольник-Ларионов”. Вид подключения зависит от схемы подключения трансформатора, либо генератора, с выходом которого соединен этот выпрямитель. Автор статьи – AKV.

Форум по обсуждению материала ВЫПРЯМИТЕЛИ

Пайка SMD компонентов 1206, 0805, MELF, SO8, SO14, SO28, TQFP32 в домашних условиях обычным паяльником.

Изучим разные типы датчиков приближения и объекты, которые они могут обнаруживать.

Ещё один самодельный стереоусилитель на TDA2030, TDA2050, TDA2040 или LM1875T, с возможностью мостового включения.

Структурная схема и классификация выпрямителей

Выпрямитель можно представить в виде обобщенной структурной схемы (рис. 1) и структурной схемы с протекающими в нем напряжениями и токами (рис. 1.1), в которую входят:

· силовой трансформатор (СТ),

· вентильный блок (ВБ),

· фильтрующее устройство (ФУ),

· цепь нагрузки (Н), в которую может входить стабилизатор напряжения (СН) .

Рис. 1. Обобщенная структурная схема выпрямителя.

Рис. 1.1. Структурная схема выпрямителя с протекающими в нем напряжениями и токами.

Силовой трансформатор служит для согласования входного и выходного напряжений выпрямителя. Возможны различные соединения обмоток трансформатора соответственно с различными схемами выпрямления. Напряжение вторичной обмотки трансформатора U2 определяет значение выпрямленного напряжения Uн (или Ud).

Трансформатор позволяет одновременно гальванически развязать питающую сеть U1, I1 с частотой f1, и цепь нагрузки с Uн, Iн (или Ud, Id). В последнее время в связи с появившейся возможностью разрабатывать и изготавливать высоковольтные инверторы, работающие на высокой частоте и при непосредственном выпрямлении напряжения сети, используются беcтрансформаторные схемы выпрямления, в которых вентильный блок присоединяется непосредственно к первичной питающей сети.

Вентильный блок выпрямляет переменный ток, подключая вторичное напряжение соответствующей фазы трансформатора к цепи постоянного тока. В вентильном блоке используются, как правило, полупроводниковые диоды или сборки на их основе. На выходе вентильного блока получают знакопостоянное напряжение с высоким уровнем пульсаций, определяемым только числом фаз питающей сети и выбранной схемой выпрямления.

Фильтрующее устройство обеспечивает требуемый уровень пульсаций выпрямленного тока в цепи нагрузки. В качестве ФУ используются последовательно включаемые резистор или сглаживающий дроссель и параллельно включаемые конденсаторы. Иногда ФУ строится по более сложным схемам. В выпрямителях малой мощности установка резистора или дросселя не обязательна.

При использовании многофазных (чаще всего трехфазных) схем выпрямления уровень пульсаций естественно снижается, и облегчаются условия работы ФУ.

Стабилизатор напряжения служит для уменьшения внешних воздействий, таких как: изменение напряжения питающей сети, изменение температуры, частоты и т.д.

Полупроводниковые выпрямители можно классифицировать по следующим признакам:

1) по выходной мощности (маломощные – до 600 Вт, средней мощности – до 100 кВт, и большой мощности – более 100 кВт);

2) по числу фаз источника (однофазные, многофазные);

3) по пульсности (р) выпрямителя, определяемой числом полупериодов протекания тока во вторичной обмотке трансформатора за полный период напряжения U1;

4) по числу знакопостоянных импульсов в кривой выпрямленного напряжения U2 за период питающего напряжения:

– однополупериодные;

– двухполупериодные;

– m-полупериодные.

Выпрямители могут быть построены на управляемых вентилях (тиристорах, транзисторах) – управляемые выпрямители и на неуправляемых вентилях (диодах) – неуправляемые выпрямители.

Для работы и расчета выпрямителя принципиальное значение имеет характер нагрузки включенной на выходе выпрямителя. Различают следующие режимы работы выпрямителя:

а) на активную нагрузку;

б) на активно-индуктивную нагрузку;

в) на активно-емкостную нагрузку;

Разные формы потребляемых из сети токов и их продолжительность при различном характере нагрузки выпрямителя приводит к тому, что методы расчетов выпрямителей существенно различаются.

Расчет выпрямителя сводится к выбору схемы выпрямления, типа диодов, определению электромагнитных нагрузок на обмотках трансформатора, диодах и элементах сглаживающего фильтра, а также энергетических показателей.

Выбор схемы выпрямителя зависит от ряда факторов, которые должны учитываться в зависимости от требований, предъявляемых к выпрямительному устрой­ству. К ним относятся:

– величины выпрямленного напряжения и мощности;

Читайте также:
Евроремонт квартиры и дома – что это такое, виды, этапы, чем отличается от обычного ремонта

– частота и величина пульсации выпрямленного напряжения;

– число диодов и величина обратного напряжения на них;

– коэффициент полезного действия (к.п.д.);

– коэффициент мощности и другие энергетические показатели.

При расчете выпрямителя большое значение имеет также коэффи­циент использования трансформатора по мощности, который определяется как:

,

где Ud, Id – средние значения выпрямленного напряжения и тока, U1, I1 – действующие значения первичного напряжения и тока, U2, I2 – действующие значения вторичного напряжения и тока.

При увеличении коэффициента использования трансформатора габариты выпрямителя в целом уменьшаются, а коэффициент полезного действия возрастает.

Схемы выпрямителей

Теперь мы подошли к наиболее популярному применению диода: выпрямлению. Упрощенно, выпрямление – это преобразование переменного напряжения в постоянное. Оно включает в себя устройство, которое позволяет протекать электронам только в одном направлении. Как мы уже видели, это именно то, что и делает полупроводниковый диод. Простейшим выпрямителем является однополупериодный выпрямитель. Он пропускает через себя на нагрузку только половину синусоиды сигнала переменного напряжения.

Схема однополупериодного выпрямителя

Однополупериодный выпрямитель не удовлетворяет требований большинства источников питания. Содержание гармоник в выходном сигнале выпрямителя слишком велико, и, следовательно, их трудно отфильтровать. Кроме того питающий источник переменного напряжения подает питание на нагрузку во время только одной половины каждого полного периода, а это означает, что половина его возможностей не используется. Тем не менее, однополупериодный выпрямитель является очень простым способом уменьшения мощности, подводимой к активной нагрузке. Переключатели некоторых двухпозиционных ламповых диммеров подают напрямую полное переменное напряжение на лампу накаливания для «полной» яркости или через однополупериодный выпрямитель для уменьшения яркости (рисунок ниже).

Использование однополупериодного выпрямителя: двухпозиционный ламповый диммер

В положении переключателя “Тускло” лампа накаливания получает примерно половину мощности, которую она бы получала при работе с полным периодом переменного напряжения. Поскольку питание после однополупериодного выпрямителя пульсирует гораздо быстрее, чем нить накала успевает нагреться и охладиться, лампа не мигает. Вместо этого, нить накала просто работает на меньшей, чем обычно, температуре, обеспечивая менее яркий свет. Эта идея быстроты «пульсирования» питания по сравнению с медленно реагирующей нагрузкой широко используется в мире промышленной электроники для управления электроэнергией, подаваемой на нагрузку. Так как управляющее устройство (в данном случае, диод) в любой момент времени либо полностью проводит, либо полностью не проводит ток, то оно рассеивает мало тепловой энергии, контролируя при этом мощность нагрузки, что делает этот метод управления питанием очень энергоэффективным. Эта схема, возможно, является самым грубым способом подачи пульсирующего питания на нагрузку, но она достаточна в качестве применения, доказывающего правильность идеи.

Если нам нужно выпрямить питание переменным напряжением, чтобы получить полное использование обоих полупериодов синусоидального сигнала, то необходимо использовать другие схемы выпрямителей. Такие схемы называются двухполупериодными выпрямителями. Один из типов двухполупериодных выпрямителей, называемый выпрямителем со средней точкой, использует трансформатор со средней точкой во вторичной обмотке и два диода, как показано на рисунке ниже.

Двухполупериодный выпрямитель, схема со средней точкой

Понять работу данной схемы довольно легко, рассмотрев ее в разные половины периода синусоидального сигнала. Рассмотрим первую половину периода, когда полярность напряжения источника положительна (+) наверху и отрицательна внизу. В это время ток проводит только верхний диод, нижний диод блокирует протекание тока, а нагрузка “видит” первую половину синусоиды, положительную наверху и отрицательную внизу. Во время первой половины периода ток протекает только через верхнюю половину вторичной обмотки трансформатора (рисунок ниже).

Двухполупериодный выпрямитель со средней точкой: Верхняя половина вторичной обмотки проводит ток во время положительной полуволны на входе, доставляя положительную полуволну на нагрузку (стрелками показано направление движения потока электронов)

В течение следующего полупериода полярность переменного напряжения меняется на противоположную. Теперь другой диод и другая половина вторичной обмотки трансформатора проводят ток, а часть схемы, проводившая ток во время предыдущего полупериода, находится в ожидании. Нагрузка по-прежнему “видит” половину синусоиды, той же полярности, что и раньше: положнительная сверху и отрицательная снизу (рисунок ниже).

Двухполупериодный выпрямитель со средней точкой: Во время отрицательной полуволны на входе ток проводит нижняя половина вторичной обмотки, доставляя положительную полуволну на нагрузку (стрелками показано направление движения потока электронов)

Одним из недостатков этой схемы двухполупериодного выпрямителя является необходимость трансформатора со средней точкой во вторичной обмотке. Особенно сильно этот недостаток проявляется, если для схемы имеют значение высокая выходная мощность; размер и стоимость подходящего трансформатора становятся одними из определяющих факторов. Следовательно, схема выпрямителя со средней точкой используется только в приложениях с низким энергопотреблением.

Читайте также:
Звукоизоляция для домашнего кинотеатра

Полярность на нагрузке двухполупериодного выпрямителя со средней точкой может быть изменена путем изменения направления диодов. Кроме того, перевернутые диоды могут подключены параллельно с существующим выпрямителем с положительным выходом. В результате получится двуполярный двухполупериодный выпрямитель со средней точкой, показанный на рисунке ниже. Обратите внимание, что соединение диодов между собой аналогично схеме моста.

Двуполярный двухполупериодный выпрямитель со средней точкой

Существует еще одна популярная схема двухполупериодного выпрямителя, она построена на базе схемы четырехдиодного моста. По очевыдным причинам эта схема называется двухполупериодным мостовым выпрямителем.

Двухполупериодный мостовой выпрямитель

Направления потоков электронов в двухполупериодном мостовом выпрямителе показано на рисунках ниже для положительной и отрицательной полуволн синусоиды переменного напряжения источника. Обратите внимание, что независимо от полярности на входе, ток через нагрузку протекает в одном и том же направлении. То есть, отрицательная полуволна на источнике соответствует положительной полуволне на нагрузке. Ток протекает через два диода, соединенных последовательно для обеих полярностей. Таким образом, из-за падения напряжения на двух диодах теряется (0.7 x 2 = 1.4В для кремниевых диодов). Это является недостатком по сравнению с двухполупериодным выпрямителем со средней точкой. Этот недостаток является проблемой только для очень низковольтных источников питания.

Двухполупериодный мостовой выпрямитель. Поток электронов для положительных полупериодов Двухполупериодный мостовой выпрямитель. Поток электронов для отрицательных полупериодов

Запоминание правильного соединения диодов схемы мостового выпрямителя иногда может вызвать проблемы у новичка. Альтернативное представление этой схемы может облегчить запоминание и понимание. Это точно такая же схема, за исключением того, что все диоды нарисованы в горизонтальном положении и указывают в одном направлении (рисунок ниже).

Альтернативное представление схемы двухполупериодного мостового выпрямителя

Одним из преимуществ такого представления схемы мостового выпрямителя является то, что она легко расширяется до многофазной версии (рисунок ниже).

Схема трехфазного мостового выпрямителя

Линия каждой из фаз подключается между парой диодов: один ведет к положительному (+) выводу нагрузки, а второй – к отрицательному. Многофазные системы с количеством фаз, более трех, так же могут быть легко использованы в схеме мостового выпрямителя. Возьмем, например, схему шестифазного мостового выпрямителя (рисунок ниже).

Схема шестифазного мостового выпрямителя

При выпрямлении многофазного переменного напряжения сдвинутые по фазе импульсы накладываются друг на друга создавая выходное постоянное напряжение, которое более “гладкое” (имеет меньше переменных составляющих), чем при выпрямлении однофазного переменного напряжения. Это преимущество является решающим в схемах выпрямителей высокой мощности, где физический размер фильтрующих компонентов будет чрезмерно большим, но при этом необходимо получить постоянное напряжение с низким уровнем шумов. Диаграмма на рисунке ниже показывает двухполупериодное выпрямление трехфазного напряжения.

Трехфазное переменное напряжение и выходное напряжение трехфазного двухполупериодного выпрямителя

В любом случае выпрямления (однофазном или многофазном) количество переменного напряжения, смешанного с выходным постоянным напряжением выпрямителя, называется напряжением пульсаций. В большинстве случаев напряжение пульсаций нежелательно, так как целью выпрямления является “чистое” постоянное напряжение. Если уровни мощности не слишком велики, для уменьшения пульсаций в выходном напряжении могут быть использованы схемы фильтрации.

Иногда метод выпрямления классифицируется путем подсчета количества “импульсов” постоянного напряжения на выходе каждые 360° синусоиды входного напряжения. Однофазная однополупериодная схема выпрямителя тогда будет называться 1-импульсным выпрямителем, поскольку он дает один импульс во время полного периода (360°) сигнала переменного напряжения. Однофазный двухполупериодный выпрямитель (независимо от схемы, со средней точкой или мостовой) будет называться 2-импульсным выпрямителем, поскольку он выдает 2 импульса постоянного напряжения за один период переменного напряжения. Трехфазный двухполупериодный выпрямитель будет называться 6-импульсным.

Современное соглашение в электротехнике описывает работу схемы выпрямителя с помощью трехпозиционной записи фаз, путей и количества импульсов. Схема однофазного однополупериодного выпрямителя в данном зашифрованном обозначении будет следующей 1Ph1W1P (1 фаза, 1 путь, 1 импульс), а это означает, что питающее переменное напряжение однофазно, ток каждой фазы источника переменного напряжения протекает только в одном направлении (пути), и, что в постоянном напряжении создается один импульс каждые 360° входной синусоиды. Однофазный двухполупериодный выпрямитель со средней точкой в этой системе записи будет обозначаться, как 1Ph1W2P: 1 фаза, 1 путь или направление протекания тока в каждой половине обмотки, и 2 импульса в выходном напряжении за период. Однофазный двухполупериодный мостовой выпрямитель будет обозначаться, как 1Ph2W2P: так же, как и схема со средней точкой, за исключением того, что ток может протекать двумя путями через линии переменного напряжения, вместо только одного пути. Трехфазный мостовой выпрямитель, показанный ранее, будет называться выпрямителем 3Ph2W6P.

Читайте также:
Армирование перемычек над окнами

Вожможно ли получить количество импульсов больше, чем удвоенное количество фаз в схеме выпрямителя? Ответ на этот вопрос, да: особенно в многофазных цепях. При помощи творческого использования трансформаторов наборы двухполупериодных выпрямителей могут быть соединены параллельно таким образом, что на выходе для трехфазного переменного напряжения может быть получено более шести импульсов постоянного напряжения. Когда схемы соединения обмоток трансформатора не одинаковы, из первичной во вторичную цепь трехфазного трансформатора вводится 30° фазовый сдвиг. Другими словами, трансформатор подключенный по схеме либо Y-Δ, либо Δ-Y будет давать сдвиг фазы на 30°; в то время, как подкючение трансформатора по схеме Y-Y или Δ-Δ такого эффекта не даст. Это явление может быть использовано при наличии одного трансформатора, подключенного по схеме Y-Y к одному мостовому выпрямителю, и другого трансформатора, подключенного по схеме Y-Δ к другому мостовому выпрямителю, а затем параллельном соединению выходов постоянного напряжения обоих выпрямителей (рисунок ниже). Поскольку формы напряжений пульсаций на выходах двух выпрямителей смещены по фазе на 30° относительно друг друга, в результате сложения они дадут меньшие пульсации, чем каждый выпрямитель по отдельности: 12 импульсов каждые 360° вместо шести:

Схема многофазного выпрямителя: 3 фазы, 2 пути, 12 импульсов (3Ph2W12P)

Полупроводниковые выпрямители — часть1

2018-01-23 Теория Один комментарий

Сегодня немножко углубимся в теорию и поговорим о схемах выпрямителей. Рассмотрим сам принцип выпрямления переменного тока, наиболее часто встречающиеся схемы выпрямителей, полупроводниковые элементы, которые применяются в этих схемах.

Выпрямителями называются устройства, предназначенные для преобразования переменного тока в постоянный. Общая схема стандартного однофазного выпрямителя состоит из трансформатора, выпрямительного блока на основе полупроводниковых диодов и сглаживающего фильтра в виде конденсатора.

Трансформатор служит для преобразования переменного напряжения сети 220 V в необходимое выходное напряжение нагрузки. Выпрямительный блок (диодный мост) преобразовывает переменный ток в постоянный пульсирующий, а сглаживающий фильтр преобразовывает его в ток, близкий по форме к постоянному току.

В качестве диодных выпрямителей могут использоваться как четыре отдельных диода, так и диодная сборка в едином корпусе. На схемах диодный мост обычно изображается таким образом:

Современные выпрямители различают по типу используемых выпрямителей, схеме их включения и числу фаз. Также выпрямители могут быть управляемые и неуправляемые.

Однофазные выпрямители

Основными схемами однофазных выпрямителей являются однополупериодная и двухполупериодная (мостовая или со средней точкой).

Однофазная однополупериодная схема является самой простейшей схемой выпрямителя.

Трансформатор преобразовывает сетевое напряжение первичной обмотки Uc в напряжение вторичной обмотки U2. Так как диод Д имеет одностороннюю проводимость, ток I2 будет протекать только при положительной полуволне вторичного напряжения, при отрицательной полуволне диод будет закрыт. Так как ток в нагрузке протекает только в один полупериод, отсюда и название выпрямителя — однополупериодный.

К недостаткам однополупериодных выпрямителей следует отнести униполярный ток, который, проходя через вторичную обмотку, намагничивает сердечник трансформатора, изменяя его характеристики и уменьшая КПД, высокий уровень пульсаций и большое обратное напряжение на диоде.

Двухполупериодные схемы выпрямления уже значительно интересней. Из них наибольшую популярность приобрела мостовая схема включения диодов.

Схема состоит из трансформатора и четырех диодов,собранных мостом. Одна из диагоналей моста соединена с выводами вторичной обмотки трансформатора, вторая диагональ с нагрузкой. При положительном потенциале в точке a вторичной обмотки трансформатора ток пойдет по цепи точка a вторичной обмотки – A – диод Д1B – нагрузка D — диод Д3. К диодам Д2 и Д4 при этом приложено обратное напряжение, они заперты. При изменении направления Э.Д.С и тока во вторичной обмотке положительный потенциал появится уже в точке b вторичной обмотки трансформатора. Ток при этом пойдет по цепи bC — диод Д2B — нагрузка D — диод Д4.

Таким образом ток в нагрузке не меняет своего направления. Кривые напряжения и тока на нагрузке повторяют (при прямом напряжении на диодах U np ≈ 0) по величине и форме выпрямленные полуволны напряжения и тока вторичной обмотки трансформатора. Они пульсируют от нуля до максимального значения.

Читайте также:
Евроремонт квартиры и дома – что это такое, виды, этапы, чем отличается от обычного ремонта

Кроме мостовой схемы выпрямления может применяться двунаправленная схема.

Схема состоит из трансформатора со средней отпайкой на вторичной обмотке и двух диодов. Когда в точке a имеется положительный потенциал ток протекает по цепи a — диод Д1 — нагрузка — отпайка вторичной обмотки. При положительном потенциале в точке b вторичной обмотки ток потечет по цепи b — диод Д2с — нагрузка — отпайка вторичной обмотки.

На левом рисунке показана зависимость напряжения вторичной обмотки трансформатора от времени, на правом изменение тока нагрузки. Как следует из работы выпрямителя, направление тока в нагрузке неизменно. Вторичная обмотка трансформатора двухфазная и каждая фаза работает половину периода. Напряжение на нагрузке в любой момент равно мгновенному значению ЭДС фазы, работающей в данный момент.

К основным минусам данной схемы можно отнести необходимость делать отпайку вторичной обмотки трансформатора и большое обратное напряжение диода Uобр = 2U2м = 3,14U0, поэтому она не получила столь широкого распространения как мостовая схема.

Трехфазные выпрямители

Среди трехфазных схем наибольшее распространение получили однонаправленная схема выпрямления или схема Миткевича и мостовая схема, известная также как схема Ларионова.

Рассмотрим сначала однонаправленную схему выпрямителя.

В однонаправленной схеме вторичные обмотки трехфазного трансформатора соединены звездой. К фазам а, b и с подключены диоды Д1, Д2 и Д3, катоды которых соединены в точке . Нагрузка подключена между общим выводом трех вторичных обмоток трансформатора и общей точкой присоединения катодов.

Ток на каждом диоде будет протекать только тогда, когда потенциал на аноде будет выше потенциала на катоде. Это возможно в течении 1/3 периода, когда напряжение в данной фазе выше напряжений в двух других фазах. То есть когда U2а>U2b и U2a>U2c, диод Д1 будет открыт, в то время как Д2 и Д3 будут заперты. Под действием напряжения U2а ток замыкается через обмотку фазы а, диод Д1 и нагрузку . В следующую треть периода открывается диод Д2, затем Д3 и т.д.

Напряжение нагрузки будет равно напряжению фазы с открытым диодом и следовательно ток нагрузки изменяется по тому же закону. При этом ток в нагрузке всегда будет больше 0.

Пульсация тока в такой схеме будет относительно невелика, что понижает требования к сглаживающему фильтру. Недостатком данной схемы, также как однофазной однополупериодной является намагничивание сердечника трансформатора.

Большее распространение в трехфазных выпрямителях получила мостовая схема Ларионова, так как она лишена недостатков однотактной схемы.

В такой схеме одновременно пропускают ток два диода — один с наибольшим положительным потенциалом анода относительно нулевой точки трансформатора из катодной группы диодов, другой — с наибольшим отрицательным потенциалом катода. Нагрузка подключается между анодной и катодной группой диодов.

В интервал времени t1-t2 пропускать ток будут диоды Д1 и Д4, так как наибольший положительный потенциал имеет анод фазы а, а наибольшим отрицательным потенциалом обладает катод фазы b. В интервале t2-t3 пропускать ток будут диоды Д1-Д6, в интервале t3-t4 — Д3-Д6, в интервале t4-t5 — Д3-Д2, в интервале t5-t6 — Д5-Д2 и в последнем интервале — Д5-Д4.

Таким образом напряжение на нагрузке будет иметь вид шести пульсаций за период, а интервал проводимости каждого диода — 2π/3. При этом интервал совместной работы двух диодов — π/6. Среднее значение напряжения на нагрузке будет:

где U2 — действующее значение напряжения на вторичных обмотках трансформатора.

Среднее значение выпрямленного напряжения практически равно максимальному линейному напряжению питающей сети:

где Uab.m — максимальное линейное напряжение вторичной обмотки.

Из достоинств схемы нужно отметить то, что в такой схеме отсутствует вынужденное подмагничивание сердечника трансформатора. Кроме того коэффициент пульсаций значительно ниже, чем у однофазной двухполупериодной схемы и составляет 0,057.

На основе этой схемы можно создать двенадцати, восемьнадцати, двадцатичетырехфазные выпрямители. Для этого используются различные сочетания последовательного и параллельного соединения схем. Чем больше будет фаз и соответственно пар диодов, тем меньше будут выходные пульсации.

Кроме этих схем, могут применяться и управляемые схемы выпрямления, которые наряду с выпрямлением переменного тока обеспечивают и регулировку выходного напряжения (тока). Но об этом мы поговорим в следующий раз.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Foundation-Stroy.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: