Изготовление солнечных батарей для дома своими руками

Солнечные батареи своими руками. Расчет и выбор солнечных элементов

Солнечные батареи редко рассматриваются в качестве единственного источника электроэнергии, тем не менее, целесообразность в их установке есть. Так, в безоблачную погоду правильно рассчитанная автономная система сможет обеспечивать электроэнергией подключенные к ней электроприборы практически круглые сутки. Впрочем, грамотно скомплектованные солнечные панели, аккумуляторы и вспомогательные устройства даже в пасмурный зимний день позволят значительно снизить затраты на оплату электроэнергии по счетчику.

Использую солнечные панели из элементов уже 2-й год. Был вынужден, так как в кооперативе, где мой гараж, очень надолго отключили свет. Собрал 2 шт. по 60 Ватт, контроллер купил и инвертер на 1500 Вт. Полная независимость просто окрыляет. И свет есть, и работа ручным инструментом доставляет удовольствие.

Правильная организация автономных систем электроснабжения на основе солнечных батарей – это целая наука, но, опираясь на опыт пользователей нашего портала, мы можем рассмотреть общие принципы их создания.

Что такое солнечная батарея

Солнечная батарея (СБ) представляет собой несколько фотоэлектрических модулей, объединенных в одно устройство с помощью электрических проводников.

И если батарея состоит из модулей (которые еще называют панелями), то каждый модуль сформирован из нескольких солнечных элементов (которые называют ячейками). Солнечная ячейка является ключевым элементом, который находится в основе батарей и целых гелиоустановок.

На фото представлены солнечные ячейки различных форматов.

А вот фотоэлектрическая панель в сборе.

На практике фотоэлектрические элементы используются в комплекте с дополнительным оборудованием, которое служит для преобразования тока, для его аккумуляции и последующего распределения между потребителями. В комплект домашней солнечной электростанции входят следующие устройства:

  1. Фотоэлектрические панели – основной элемент системы, генерирующий электричество при попадании на него солнечного света.
  2. Аккумуляторная батарея – накопитель электроэнергии, позволяющий обеспечивать потребителей альтернативным электричеством даже в те часы, когда СБ его не вырабатывают (например, ночью).
  3. Контроллер – устройство, отвечающее за своевременную подзарядку аккумуляторных батарей, одновременно защищающее аккумуляторы от перезарядки и глубокого разряда.
  4. Инвертор – преобразователь электрической энергии, позволяющий получать на выходе переменный ток с требуемой частотой и напряжением.

Схематично система электроснабжения, работающая от солнечных батарей, выглядит следующим образом.

Схема довольно проста, но для того, чтобы она эффективно работала, необходимо правильно рассчитать рабочие параметры всех задействованных в ней устройств.

Расчет фотоэлектрических панелей

Первое, что необходимо знать, собираясь рассчитывать конструкцию фотоэлектрических преобразователей (панелей ФЭП), это количество электроэнергии, которое будет потреблять оборудование, подключенное к солнечным батареям. Просуммировав номинальную мощность будущих потребителей солнечной энергии, которая измеряется в Ваттах (Вт или кВт), можно вывести среднемесячную норму потребления электроэнергии – Вт*ч (кВт*ч). А требуемая мощность солнечной батареи (Вт) будет определяться, исходя из полученного значения.

Для примера рассмотрим перечень электрооборудования, которое сможет обеспечивать энергией небольшая солнечная электростанция мощностью 250 Вт.

Таблица взята с сайта одного из производителей солнечных панелей.

Налицо несоответствие между суточным потреблением электроэнергии – 950 Вт*ч (0,95 кВт*ч) и значением мощности солнечной батареи – 250 Вт, которая при непрерывной работе должна генерировать в сутки 6 кВт*ч электроэнергии (что намного больше обозначенных потребностей). Но раз уж мы говорим именно о солнечных панелях, то следует помнить, что свою паспортную мощность эти устройства способны развивать только в светлое время суток (примерно с 9-ти до 16-ти часов), да и то в ясный день. В пасмурную погоду выработка электроэнергии также заметно падает. А утром и вечером объем электроэнергии, вырабатываемой батареей, не превышает 20–30% от среднесуточных показателей. К тому же, номинальная мощность может быть получена с каждой ячейки только при наличии оптимальных для этого условий.

Почему номинал батареи 60 Вт, а она выдает 30? Значение 60 Вт производители ячеек фиксируют при инсоляции в 1000Вт/м² и температуре батареи – 25 градусов. Таких условий на земле, а тем более в средней полосе России, нет.

Все это учитывается, когда в конструкцию солнечных панелей закладывается определенный запас мощности.

Теперь поговорим о том, откуда взялся показатель мощности – 250 кВт. Указанный параметр учитывает все поправки на неравномерность солнечного излучения и представляет собой усредненные данные, основанные на практических экспериментах. А именно: измерение мощности при различных условиях эксплуатации батарей и вычисление ее среднесуточного значения.

Когда узнаете объем потребления, выбирайте фотоэлектрические элементы, исходя из требуемой мощности модулей: каждые 100Вт модулей вырабатывают 400-500 Вт*ч в сутки.

Идем дальше: зная среднесуточные потребности в электричестве, можно рассчитать требуемую мощность солнечных батарей и количество рабочих ячеек в одной фотоэлектрической панели.

При осуществлении дальнейших расчетов будем ориентироваться на данные уже знакомой нам таблицы. Итак, предположим, что суммарная мощность потребления равна примерно 1 кВт*ч в сутки (0,95 кВт*ч). Как мы уже знаем, нам понадобится солнечная батарея, обладающая номинальной мощностью – не менее 250 Вт.

Предположим, что для сборки рабочих модулей вы планируете использовать фотоэлектрические ячейки с номинальной мощностью – 1,75 Вт (мощность каждой ячейки определяется произведением силы тока и напряжения, которые генерирует солнечный элемент). Мощность 144-х ячеек, объединенных в четыре стандартных модуля (по 36 ячеек в каждом), будет равна 252 Вт. В среднем с такой батареи мы получим 1 – 1,26 кВт*ч электроэнергии в сутки, или 30 – 38 кВт*ч в месяц. Но это в погожие летние дни, зимой даже эти значения можно получить далеко не всегда. При этом в северных широтах результат может быть несколько ниже, а в южных – выше.

Есть солнечные батареи – 3,45 кВт. Работают параллельно с сетью, поэтому КПД – максимально возможный:

  • июнь 467кВт*ч.
  • июль 480 кВт*ч.
  • август 497 кВт*ч.
  • сентябрь 329 кВт*ч.
  • октябрь 305 кВт*ч.
  • ноябрь 320 кВт*ч.
  • декабрь 216 кВт*ч.
  • январь 2014 пока 126 кВт*ч.

Эти данные чуть выше средних значений, т. к. солнца было больше обычного. Если циклон затяжной будет, то выработка в зимний месяц может не превысить 100-150 кВт*ч.

Представленные значения – это киловатты, которые можно получить непосредственно с солнечных батарей. Сколько же энергии дойдет до конечных потребителей – это зависит от характеристик дополнительного оборудования, встроенного в систему электроснабжения. О них мы поговорим позже.

Как видим, количество солнечных элементов, необходимых для генерирования заданной мощности, можно рассчитать лишь приблизительно. Для более точных расчетов рекомендуется использовать специальные программы и онлайн калькуляторы солнечной энергии, которые помогут определить требуемую мощность батареи в зависимости от многих параметров (в том числе, и от географического положения вашего участка).

Если с первого раза произвести правильный расчет фотоэлектрических панелей не удалось (а непрофессионалы очень часто сталкиваются с подобной проблемой), это не беда. Недостающую мощность всегда можно будет восполнить, установив несколько дополнительных фотоэлементов.

Разновидности фотоэлектрических элементов

С помощью настоящей главы постараемся развеять заблуждения, касающиеся преимуществ и недостатков наиболее распространенных фотоэлектрических элементов. Это упростит вам выбор подходящих устройств. Широкое распространение сегодня получили монокристаллические и поликристаллические кремниевые модули для солнечных батарей.

Так выглядит стандартный солнечный элемент (ячейка) монокристаллического модуля, который можно безошибочно отличить по скошенным углам.

Ниже представлено фото поликристаллической ячейки.

Какой модуль лучше? Пользователи FORUMHOUSE активно спорят по этому поводу. Кто-то считает, что поликристаллические модули работают более эффективно при пасмурной погоде, при этом монокристаллические панели демонстрируют превосходные показатели в солнечные дни.

У меня моно – 175 Вт дают на солнце под 230 Вт. Но я отказываюсь от них и перехожу на поликристаллы. Потому что, когда небо чистое, электричества хоть залейся с любого кристалла, а вот когда пасмурно – мои вообще не работают.

При этом всегда найдутся оппоненты, которые после проведения практических замеров полностью опровергают представленное утверждение.

Читайте также:
Автомойка в гараже своими руками

У меня получается все наоборот: поликристаллы очень чувствительны к затемнению. Стоит маленькому облачку пройти по солнцу, как это сразу отражается на количестве вырабатываемого тока. Напряжение, кстати, практически не меняется. Монокристаллическая же панель ведет себя более стабильно. При хорошем освещении обе панели ведут себя очень хорошо: заявленная мощность обеих панелей – 50Вт, обе эти самые 50Вт выдают. Отсюда мы видим, как улетучивается миф о том, что монопанели дают больше мощности при хорошем освещении.

Второе утверждение касается срока службы фотоэлектрических элементов: поликристаллы стареют быстрее монокристаллических элементов. Рассмотрим данные официальной статистики: стандартный срок службы монокристаллических панелей составляет 30 лет (некоторые производители утверждают, что такие модули могут работать до 50 лет). При этом период эффективной эксплуатации поликристаллических панелей не превышает 20-ти лет.

Действительно, мощность солнечных батарей (даже с очень высоким качеством) с каждым годом эксплуатации уменьшается на определенные доли процента (0,67% – 0,71%). При этом в первый год эксплуатации их мощность может снизиться сразу на 2% и 3% (у монокристаллических и поликристаллических панелей – соответственно). Как видим, разница есть, но она незначительна. А если учесть, что представленные показатели во многом зависят от качества фотоэлектрических модулей, то разницу и вовсе можно не брать во внимание. Тем более, известны случаи, когда дешевые монокристаллические панели, изготовленные нерадивыми производителями, теряли до 20% своей мощности в первый же год эксплуатации. Вывод: чем надежнее производитель фотоэлектрических модулей, тем долговечнее его продукция.

Многие пользователи нашего портала утверждают, что монокристаллические модули всегда дороже поликристаллических. У большинства производителей разница в цене (в пересчете на один ватт генерируемой мощности) на самом деле ощутима, что делает покупку поликристаллических элементов более привлекательной. Поспорить с этим нельзя, но не поспоришь и с тем, что КПД монокристаллических панелей выше, чем у поликристаллов. Следовательно, при одинаковой мощности рабочих модулей поликристаллические батареи будут иметь большую площадь. Иными словами, выигрывая в цене, покупатель поликристаллических элементов может проиграть в площади, что при недостатке свободного пространства под установку СБ может лишить его так очевидной на первый взгляд выгоды.

У распространенных монокристаллов КПД, в среднем, равняется 17%-18%, у поли – около 15%. Разница – 2%-3%. Однако по площади эта разница составляет – 12%-17%. С аморфными панелями разница еще нагляднее: при их КПД – 8-10% монокристаллическая панель может быть по площади в два раза меньше аморфной.

Аморфные панели – это еще одна разновидность фотоэлектрических элементов, которые пока не успели стать достаточно востребованными, несмотря на свои очевидные преимущества: низкий коэффициент потери мощности при повышении температуры, способность генерировать электроэнергию даже при очень слабом освещении, относительная дешевизна одного производимого кВт энергии и так далее. А одна из причин низкой популярности кроется в их весьма ограниченном КПД. Аморфные модули еще называют гибкими модулями. Гибкая структура значительно облегчает их установку, демонтаж и хранение.

Не знаю, кто это аморфные рекламирует. КПД у них низкий, места почти в два раза больше занимают, при этом с возрастом КПД, так же, как и у кристаллических, снижается. Классические модули рассчитаны на 25 лет эксплуатации с потерей КПД в 20%. Плюс у аморфных пока только один: выглядят, как черное стекло (можно весь фасад такими покрыть).

Выбирая рабочие элементы для строительства солнечных батарей, в первую очередь следует ориентироваться на репутацию их производителя. Ведь именно от качества зависят их реальные рабочие характеристики. Также нельзя упускать из вида условия, при которых будет производиться монтаж солнечных модулей: если площадь, отведенная под установку солнечных батарей, у вас ограничена, то целесообразно использовать монокристаллы. Если недостатка в свободном пространстве нет, то обратите внимание на поликристаллические или аморфные панели. Последние могут оказаться даже практичнее панелей кристаллических.

Приобретая готовые панели от производителей, можно значительно упростить себе задачу по строительству солнечных батарей. Для тех же, кто предпочитает все создавать своими руками, процесс изготовления солнечных модулей будет описан в продолжении настоящей статьи. Также в ближайшее время мы планируем рассказать о том, по каким критериям следует выбирать аккумуляторы, контроллеры и инверторы – устройства, без которых ни одна солнечная батарея не сможет функционировать полноценно. Следите за обновлениями нашей статейной ленты.

На фото изображены 2 панели: самодельная монокристаллическая на 180Вт (слева) и поликристаллическая от производителя на 100 Вт (справа).

О самых популярных альтернативных источниках энергии вы сможете узнать в соответствующей теме, открытой для обсуждения на нашем портале. В разделе, посвященном строительству автономного дома, можно узнать много интересного об альтернативной энергетике и о солнечных батареях, в частности. А небольшой видеосюжет расскажет об основных элементах стандартной солнечной электростанции и об особенностях установки солнечных панелей.

Как сделать солнечную батарею: 5 лучших мастер-классов

Человечество в целях заботы об экологии и экономии денежных средств начало использовать альтернативные источники энергии, к которым, в частности, принадлежат солнечные батареи. Покупка такого удовольствия обойдется довольно дорого, но не составляет сложности сделать данное устройство своими руками. Поэтому вам не помешает узнать, как самому сделать солнечную батарею. Об этом и пойдет речь в нашей статье.

Устройство и принципы работы

Солнечные батареи — устройства, генерирующие электроэнергию с помощью фотоэлементов.

Прежде чем говорить о том, как сделать солнечную батарею своими руками, необходимо понять устройство и принципы ее работы. Солнечная батарея включает в себя фотоэлементы, соединенные последовательно и параллельно, аккумулятор, накапливающий электроэнергию, инвертор, преобразующий постоянный ток в переменный и контроллер, следящий за зарядкой и разрядкой аккумулятора.

Как правило, фотоэлементы изготавливают из кремния, но его очистка обходится дорого, поэтому в последнее время начали использовать такие элементы, как индий, медь, селен.

Каждый фотоэлемент является отдельной ячейкой, генерирующей электроэнергию. Ячейки сцеплены между собой и образуют единое поле, от площади которого зависит мощность батареи. То есть, чем больше фотоэлементов, тем больше электроэнергии генерируется.

Для того чтобы изготовить солнечную панель своими руками в домашних условиях, необходимо понимать сущность такого явления, как фотоэффект. Фотоэлемент – кремниевая пластинка, при попадании света на которую с последнего энергетического уровня атомов кремния выбивается электрон. Передвижение потока таких электронов вырабатывает постоянный ток, который впоследствии преобразуется в переменный. В этом и заключается явление фотоэффекта.

Преимущества

Солнечные батареи имеют следующие преимущества:

  • безвредность для экологии;
  • долговечность;
  • бесшумная работа;
  • легкость изготовления и монтажа;
  • независимость поставки электричества от распределительной сети;
  • неподвижность частей устройства;
  • незначительные финансовые затраты;
  • небольшой вес;
  • работа без механических преобразователей.

Разновидности

Солнечные батареи подразделяются на следующие виды.

Кремниевые

Кремний — самый популярный материал для батарей.

Кремниевые батареи также делятся на:

  1. Монокристаллические: для производства таких батарей используется очень чистый кремний.
  2. Поликристаллические (дешевле монокристаллических): поликристаллы получают постепенным охлаждением кремния.

Пленочные

Такие батареи подразделяются на следующие виды:

  1. На основе теллурида кадмия (КПД 10%): кадмий обладает высоким коэффициентом светопоглощения, что и позволяет использовать его в производстве батарей.
  2. На основе селенида меди — индия: КПД выше, чем у предыдущих.
  3. Полимерные.

Солнечные батареи из полимеров начали изготавливать относительно недавно, обычно для этого используют фуреллены, полифенилен и др. Пленки из полимеров очень тонкие, порядка 100 нм. Несмотря на КПД 5%, батареи из полимеров имеют свои преимущества: дешевизна материала, экологичность, эластичность.

Аморфные

КПД аморфных батарей составляет 5%. Такие панели изготавливаются из силана (кремневодорода) по принципу пленочных батарей, поэтому их можно отнести, как к кремниевым, так и к пленочным. Аморфные батареи эластичны, генерируют электричество даже в непогоду, поглощают свет лучше других панелей.

Читайте также:
Варкетная доска на кухне: плюсы и минусы водостойкой доски

Материалы

Для изготовления солнечной батареи потребуются следующие материалы:

  • фотоячейки;
  • алюминиевые уголки;
  • диоды Шоттки;
  • силиконовые герметики;
  • проводники;
  • крепежные винты и метизы;
  • поликарбонатный лист/оргстекло;
  • паяльное оборудование.

Эти материалы обязательны для того, чтобы сделать солнечную батарею своими руками.

Выбор фотоэлементов

Чтобы сделать солнечную батарею для дома своими руками, следует правильно подобрать фотоэлементы. Последние подразделяются на монокристаллические, поликристаллические и аморфные.

КПД первых составляет 13%, но такие фотоэлементы малоэффективны в непогоду, внешне представляют собой ярко-синие квадраты. Поликристаллические фотоэлементы способны генерировать электроэнергию даже в непогоду, хотя их КПД всего лишь 9%, внешне темнее монокристаллических и срезаны по краям. Аморфные фотоячейки изготавливаются из гибкого кремния, их КПД составляет 10%, работоспособность не зависит от погодных условий, но изготовление таких ячеек слишком затратное, поэтому их редко используют.

Если вы планируете применять генерируемую фотоэлементами электроэнергию на даче, то советуем собрать солнечную батарею своими руками из поликристаллических ячеек, так как их КПД достаточно для ваших целей.

Следует покупать фотоячейки одной марки, так как фотоэлементы нескольких марок могут сильно отличаться — это может стать причиной возникновения проблем со сборкой батареи и ее функционированием. Следует помнить, что количество производимой ячейкой энергии прямо пропорционально ее размеру, то есть чем крупнее фотоячейка, тем больше электроэнергии она производит; напряжение ячейки зависит от ее типа, а никак не от размера.

Количество производимого тока определяется габаритами самого маленького фотоэлемента, поэтому следует покупать фотоячейки одинакового размера. Конечно же, не стоит приобретать дешевую продукцию, ведь это значит, что она не прошла проверку. Также не следует покупать фотоэлементы, покрытые воском (многие производители покрывают фотоячейки воском для сохранности продукции при перевозке): при его удалении можно испортить фотоэлемент.

Расчеты и проект

Устройство солнечной панели своими руками — несложная задача, главное, подойти к ее выполнению ответственно. Чтобы изготовить солнечную панель своими руками, следует подсчитать дневное потребление электроэнергии, затем узнать среднесуточное солнечное время в вашей местности и рассчитать нужную мощность. Таким образом, станет понятно, сколько ячеек и какого размера нужно приобрести. Ведь как было сказано выше, генерируемый ячейкой ток зависит от ее габаритов.

Зная необходимый размер ячеек и их количество, нужно рассчитать габариты и вес панели, после чего необходимо выяснить выдержит ли кровля или другое место, куда планируется установка солнечной батареи, задумываемую конструкцию.

Устанавливая панель, следует не только выбрать самое солнечное место, но и постараться закрепить ее под прямым углом к солнечным лучам.

Этапы работы

Корпус

Прежде чем начать делать солнечную панель своими руками, необходимо соорудить для нее каркас. Он защищает батарею от повреждений, влаги и пыли.

Корпус собирается из влагостойкого материала: фанеры, покрытой влагоотталкивающим средством, или алюминиевых уголков, к которым силиконовым герметиком приклеивается оргстекло или поликарбонат.

При этом нужно соблюдать отступы между элементами (3-4 мм), так как необходимо учитывать расширение материала при повышении температуры.

Пайка элементов

Фотоэлементы выкладываются на лицевую сторону прозрачной поверхности, так, чтобы расстояние между ними со всех сторон было 5 мм: таким образом учитывается возможное расширение фотоячеек при повышении температуры.

Фиксируются преобразователи, имеющие два полюса: положительный и отрицательный. Если вы хотите увеличить напряжение, соединяйте элементы последовательно, если ток — параллельно.

Во избежание разрядки аккумулятора ночью, в единую цепь, состоящую из всех необходимых деталей, включают диод Шоттки, подсоединяя его к плюсовому проводнику. Затем все элементы спаивают между собой.

Сборка

В готовый каркас размещаются спаянные преобразователи, на фотоячейки наносится силикон — все это накрывается слоем из ДВП, закрывается крышкой, а места соединений деталей обрабатываются герметиком.

Даже городской житель может сделать и разместить солнечную батарею на балконе своими руками. Желательно, чтобы балкон был застеклен и утеплен.
Вот мы и разобрали, как сделать солнечную батарею в домашних условиях, оказалось, это совсем несложно.

Идеи из подручных материалов

Можно сделать солнечную батарею своими руками из подручных материалов. Рассмотрим самые популярные варианты.

Солнечная батарея из фольги

Многие удивятся, узнав, что фольгу можно применять для изготовления солнечной батареи своими руками. На самом деле, в этом нет ничего удивительного, ведь фольга увеличивает отражающие способности материалов. Например, для уменьшения перегрева панелей, их кладут на фольгу.

Как сделать солнечную батарею из фольги?

  • 2 «крокодильчика»;
  • медная фольга;
  • мультиметр;
  • соль;
  • пустая пластиковая бутылка без горлышка;
  • электрическая печь;
  • дрель.

Очистив медный лист и вымыв руки, отрезаем кусок фольги, кладем его на раскаленную электроплиту, нагреваем полчаса, наблюдая почернение, затем убираем фольгу с плиты, даем остыть и видим, как от листа отслаиваются куски. После нагревания оксидная пленка пропадает, поэтому черный оксид можно аккуратно удалить водой.

Затем вырезается второй кусок фольги такого же размера, как и первый, две части сгибаются, опускаются в бутылку так, чтобы у них не было возможности соприкоснуться.

Далее «крокодильчики» прицепляются к панели, провод от ненагретой фольги — к плюсу, от нагретой — к минусу, соль растворяют в воде и выливают раствор в бутылку. Батарея готова.

Также фольгу можно применять для подогрева. Для этого ее необходимо натянуть на раму, к которой затем нужно подсоединить шланги, подведенные, например, к лейке с водой.

Вот мы и узнали, как самому сделать солнечную батарею для дома из фольги.

Солнечная батарея из транзисторов

У многих дома завалялись старые транзисторы, но не все знают, что они вполне подойдут для изготовления солнечной батареи для дачи своими руками. Фотоэлементом в таком случае является полупроводниковая пластина, находящаяся внутри транзистора. Как же изготовить солнечную батарею из транзисторов своими руками? Сначала необходимо вскрыть транзистор, для чего достаточно срезать крышку, так мы сможем разглядеть пластину: она небольших размеров, чем и объясняется низкий КПД солнечных батарей из транзисторов.

Далее нужно проверить транзистор. Для этого используем мультиметр: подключаем прибор к транзистору с хорошо освещенным p-n переходом и замеряем ток, мультиметр должен зафиксировать ток от нескольких долей миллиампера до 1 или чуть больше; далее переключаем прибор в режим измерения напряжения, мультиметр должен выдать десятые доли вольта.

Прошедшие проверку транзисторы размещаем внутри корпуса, например, листового пластика и спаиваем. Можно изготовить такую солнечную батарею своими руками в домашних условиях и использовать ее для зарядки аккумуляторов и радиоприемников маленькой мощности.

Солнечная батарея из диодов

Также подходят для сборки батарей старые диоды. Сделать солнечную батарею своими руками из диодов совсем несложно. Нужно вскрыть диод, оголив кристалл, являющийся фотоэлементом, затем нагревать диод 20 секунд на газовой плите, и, когда припой расплавится, извлечь кристалл. Остается припаять вытащенные кристаллы к корпусу.

Мощность таких батарей невелика, но для электропитания небольших светодиодов ее достаточно.

Солнечная батарея из пивных банок

Такой вариант изготовления солнечной батареи своими руками из подручных средств большинству покажется очень странным, но сделать солнечную батарею своими руками из пивных банок просто и дешево.

Корпус сделаем из фанеры, на которую поместим поликарбонат или оргстекло, на задней поверхности фанеры зафиксируем пенопласт или стекловату для изоляции. Фотоэлементами нам послужат алюминиевые банки. Важно выбрать именно банки из алюминия, так как алюминий менее подвержен коррозии, чем, например, железо и обладает лучшим теплообменом.

Далее в нижней части банок проделываются отверстия, крышка срезается, и ненужные элементы загибаются для обеспечения лучшей циркуляции воздуха. Затем необходимо очистить банки от жира и грязи с помощью специальных средств, не содержащих кислоты. Далее необходимо герметично скрепить банки между собой: силиконовым гелем, выдерживающим высокие температуры, или паяльником. Обязательно нужно очень хорошо просушить склеенные банки в неподвижном положении.

Читайте также:
Делаем напольный светильник своими руками

Прикрепив банки к корпусу, окрашиваем их в черный цвет и закрываем конструкцию оргстеклом или поликарбонатом. Такая батарея способна нагревать воду или воздух с последующей подачей в помещение.

Мы рассмотрели варианты того, как сделать солнечную панель своими руками. Надеемся, что теперь у вас не возникнет вопроса, как сделать солнечную батарею.

Видео

Как сделать солнечные батареи своими руками – видео урок.

Солнечные батареи своими руками: инструкция по изготовлению

В сегодняшнем мире, альтернативные источники энергии уже не прихоть, а рациональное решение, связанное с экономической выгодой и заботой о состоянии окружающей среды.

Самым популярным способом получения экологически чистой энергии остаются солнечные батареи.

Своими руками изготавливать панели получается гораздо дешевле, чем приобретать готовые комплекты. Как изготовить самодельные солнечные батареи для частного дома будет рассказано ниже.

Принцип работы солнечного электроснабжения, устройство солнечной батареи

Преобразовать энергию солнца в электричество можно несколькими способами.

Иногда применяется схема с генератором, где она трансформируется вначале в механическую, вращает вал генератора, а затем переходит в электрическую.

Минус такого способа в том, что он весьма дорогостоящий, поскольку требует использования больших зеркал, поворачивающихся по мере движения солнца.

Применение фотоэлементов позволяет напрямую преобразовывать свет в ток.

Это и есть столь популярные сегодня солнечные батареи, которые представляют собой небольшую (несколько см 2 ) кремниевую пластину, на которой в единую цепь собраны фотодиоды. При попадании света, на выходах диодов появляется фото-ЭДС около 0,5 – 0,55 V. При помощи сборки таких пластин в модули можно получить на выходе требуемую мощность.

Если бы кто-то попытался добиться значения в 220 V, то получил бы батарею колоссальных размеров. Поэтому ставится цель получения 12-24 V, а все дальнейшие преобразования происходят при помощи других составляющих системы.

Конструкция включает в себя три основных узла:

  1. Солнечную панель.
  2. Аккумуляторы.
  3. Инвертор.

Как уже говорилось, задача солнечной панели выработать ток напряжением 12-24 V, которого хватит, чтобы зарядить 12-вольтовый аккумулятор.

Устройство солнечной батареи

Одного аккумулятора будет мало для обеспечения жилья нужным количеством электроэнергии. Их количество рассчитывается исходя из потребностей конкретного дома, и может составлять свыше 10 штук (однако число аккумуляторов прямо пропорционально и размеру солнечной панели).

Преобразовывать энергию низкого напряжения в стандартную, призван инвертор. Его приобретают готовый. При покупке соотносите выдаваемую им мощность с потребностями жилья в электричестве. По меньшей мере, это должна быть мощность в 1-2 кВт.

По устройству солнечной батареи различают два её вида:

  1. Плёночные.
  2. Кремниевые.

Плёночные или полимерные реже встречаются, поскольку имеют небольшой КПД и требуют много места для установки. Кроме того, энергоэффективность плёнки сокращается на пятую часть даже при небольшой облачности.

Солнечные панели на крыше

Кремниевые, описанные выше, могут быть монокристаллическими и поликристаллическими. Монокристаллические батареи — это множество ячеек со встроенными кремниевыми преобразователями и заполненные силиконом.

В ячейках поликристаллических батарей больше преобразователей, которые установлены разнонаправленно. Эта особенность обеспечивает более эффективную работу панели, даже когда свет рассеянный. И хотя КПД таких батарей немного ниже, чем у монокристаллических, на поверку они оказываются более продуктивными и их чаще используют.

Технология самостоятельного изготовления

  1. Каркас из алюминия или дерева.
  2. Подложка из ДВП.
  3. Стекло или оргстекло.
  4. Фотоячейки.
  5. Диоды и проводники.

Одна батарея будет состоять из 36 элементов (по 81 х 150 мм), каждый из которых рассчитан на 0,5 V– в целом получится 18 V.

Обращаться с панелями нужно с большой осторожностью, потому что они очень хрупкие. По той же причине советуется покупать на 1-2 шт. больше, чтобы были запасные на случай повреждения.

Солнечные батареи для дома своими руками

Большой плюс самостоятельного изготовления солнечных батарей заключается в том, что можно собрать небольшой пробный комплекс, а затем постепенно наращивать его мощность, докупая больше элементов.

Не стоит собирать слишком большие батареи. Их сложно монтировать, тяжело менять угол наклона, кроме того, они, как парус, будут улавливать ветер, что небезопасно.

Рассмотрим процесс изготовления поэтапно.

Выбор элементов для панели

Главный вопрос – это приобретение гелиоэлементов. От удачной покупки будет зависеть, имеет ли смысл затевать самостоятельное изготовление батареи.

Можно приобрести готовый комплект для сборки панели за 4,3 — 5,1 тыс. руб.

Ещё один вариант – на известных торговых сайтах приобрести повреждённые, но работающие панели.

Это детали, отбракованные производством – они могут иметь, например, сколы, что существенно снижает их стоимость, но не влияет на работоспособность.

Выбор должен осуществляться на основании необходимой мощности. Чтобы рассчитать её, нужно хотя бы примерно подсчитать, сколько кВт потребляет в день техника в вашем доме, а затем выяснить, каково среднесуточное количество солнечного времени в вашей местности. Это позволит (опять же примерно) посчитать, сколько в день мощности будет выдавать панель. Чем больше этот показатель, тем меньше понадобится включать панелей в систему.

Важно знать, что вне зависимости от размера пластины, они выдают одинаковое напряжение, а вот на силу тока и вес конструкции, габариты влияют.

Чем больше размер панели, тем она тяжелее. А вот применять в одной системе разные панели нельзя.

Разработка проекта системы

По получившимся данным рассчитывается размер будущей конструкции и её вес. Эти показатели пригодятся для того, чтобы выполнить каркас нужного размера, а также выяснить, сможет ли выдержать конструкцию кровля дома, на которую планируется установка оборудования.

Размещая панель важно стремиться, чтобы солнечный свет попадал на поверхность под прямым углом. Поэтому, кроме того, чтобы выбрать самую освещённую сторону крыши, нужно ещё и позаботиться о том, чтобы можно было менять угол наклона гелиопанели. В снегопад, например, оборудование размещают практически вертикально, чтобы на его поверхности не задерживался снег.

Изготовление каркаса

Первым делом высчитываются размеры будущей конструкции. Сделать это просто, если уже известно, сколько панелей каких размеров будет применяться. Однако нужно оставлять по 3-4 мм между элементами, чтобы компенсировать расширение основы при изменениях температуры.

По рассчитанным размерам, из фанеры вырезается днище или основа будущей батареи. По периметру её внешней стороны делается рама из брусков. Толщина брусков – около 20 мм.

Каркас для солнечной батареи из алюминиевых уголков

Идеальная температура для работы гелиопанелей от 70 до 90° C. Под стеклом t сложно контролировать и она может значительно повышаться, особенно в тёплое время года. Поэтому в деревянной раме делаются вентиляционные отверстия. Сверлят их через каждые 20 см (диаметр около 10 мм). В нижней части тоже насверливаются отверстия с шагом в 5 см.

Также можно собрать раму из алюминиевых уголков и накрыть её оргстеклом.

Когда корпус готов, его покрывают двумя слоями краски и оставляют до полного высыхания.

Если вы живете в частном доме, то используя солнечные батареи для отопления дома, вы можете экономить значительную часть финансовых средств. Читайте подробную информацию об особенностях данной системы отопления, а также о ее плюсах и минусах.

О видах альтернативного отопления расскажем здесь.

Солнечный водонагреватель — устройство, которое будет служить вам эффективно и при этом без затрат. В этой теме https://microklimat.pro/otopitelnoe-oborudovanie/vodonagrevateli/solnechnyj-svoimi-rukami.html вы узнаете, как изготовить подобную конструкцию своими руками.

Подбор и пайка элементов

В зависимости от уровня мастерства можно приобрести проводники с припаянными контактами и без.

Чтобы самостоятельно паять элементы:

  1. Нарезать проводники в размер по картонной заготовке.
  2. Разместить проводники на нужных местах фотоэлементов.
  3. Нанести припой и кислоту на площадки контактов.
  4. Зафиксировать проводник.
  5. Паять, не нажимая на кристаллическую поверхность.

При затруднениях с пайкой, можно легонько обработать площадки для контактов нулевой наждачной бумагой.

Читайте также:
Балясина что это такое

Напыление из серебра, которое наносится на поверхность проводника, может выдержать три цикла пайки.

Осуществляя параллельно-последовательное соединение элементов нужно заранее подумать о том, что перевернуть собранную воедино, но очень хрупкую конструкцию будет сложно. Поэтому советуется сначала соединять элементы рядами, переворачивать ряд, а уже потом скреплять ряды между собой. На крайних деталях контакты выводятся на шину «минус» и «плюс». На выводящую проводку нужно пустить кабель с изоляцией. На внешней стороне рамы устанавливается клемма.

Следующий этап – закрепление гелиопанелей на фанерной основе. Для этого понадобится силиконовый герметик. На обратную сторону каждой детали наносится по капле герметика, затем она аккуратно фиксируется. Также вливаются в силикон и провода.

Необходимые элементы для изготовления солнечный батарей

Когда элементы последовательно соединены, тестером проверяется напряжение (это поможет выявить огрехи в качестве пайки). Если всё сделано правильно, то прибор покажет 17-19 V (напряжение по разным причинам может иметь небольшие отклонения от указанного в документации).

Тестирование батареи рекомендуется проводить несколько дней и только после этого производить процесс герметизации.

На алюминиевую раму наносится герметик, и на него клеится оргстекло. Обязательно нужно дать время на высыхание силикона. К деревянной раме оргстекло можно прикрепить саморезами. Все стыки, кроме вентиляционных, также заливаются герметиком.

Ввиду своего низкого КПД солнечные коллекторы для отопления дома применяются редко, однако они все же позволяют экономить на электроэнергии. Изготовив конструкцию своими руками, вы можете совершенно бесплатно использовать тепловую энергию для домашних нужд.

Обзор вариантов альтернативных источников энергии для частного дома представлен на этой странице.

Сборка элементов солнечной батареи

Разберемся, как происходит сборка солнечных батарей своими руками.

Инвертор преобразует поступающий ток в переменный, и изменяет его напряжение.

Можно выбрать один из трёх видов инверторов:

  1. Системный.
  2. Гибридный.
  3. Автономный.

Системный инвертор подойдёт, если цель солнечной батареи – создать дополнительную энергию в пару к имеющейся центральной сети 220 V. Тогда устанавливать аккумуляторы вообще не нужно. Сетевой инвертор будет преобразовывать поступившее количество энергии, и направлять её в дом.

Гибридный инвертор пригодится, если гелиоэнергия должна стать основной, питающей дом, но и отказываться от централизованного электроснабжения не собираются. Гибридный вариант с аккумуляторами будет и расходовать полученную солнечную энергию, и накапливать её на тёмное и пасмурное время.

Автономный же инвертор устанавливают там, где сети 220 V вообще нет. Они тоже устанавливаются в комплекте с аккумуляторами.

Если требуется включить в систему аккумуляторные батареи, то нужно рассчитать их количество и ёмкость. Всё будет зависеть от суммарной мощности всех солнечных батарей, но чем выше будет ёмкость, тем лучше.

Например, чтобы полностью удовлетворить потребности семьи в электричестве, понадобится выработка 4 кВт. Для накопления такого количества энергии необходимо около 16 аккумуляторов по 60 Ач.

К аккумулятору солнечную батарею нужно подключать через диод. Это исключит его саморазряд на панель ночью.

Они могут быть двух видов:

  1. МРРТ.
  2. ШИН.

Первый вариант передаёт почти 100 % энергии, но стоит в 2-3 раза дороже, чем ШИН контроллер, который теряет до 20 % мощности солнечных панелей.

В больших мощных системах, конечно, лучше один раз переплатить за МРРТ контроллер.

Небольшие конструкции можно оборудовать и ШИН контроллером, но потерянную мощность нужно будет компенсировать приобретением дополнительных аккумуляторов.

Заключение

Остаётся только добавить, что гелиосистема будет реально эффективна только в регионах, где большую часть года стоит солнечная погода. Нужно знать и то, что чем выше географическая широта, тем меньшая сила у солнечных лучей. Но современные технологии позволяют получать достаточно энергии даже в пасмурное время, а значит, хотя бы как дополнительный источник электричества, солнечные батареи очень даже привлекательны.

Видео на тему

Как сделать солнечную батарею своими руками: инструктаж по самостоятельной сборке

Солнечные батареи — источник получения энергии, которую можно направить на выработку электричества или тепла для малоэтажного дома. Вот только солнечные батареи имеют высокую стоимость и недоступны большинству жителей нашей страны. Согласны?

Другое дело, когда сделана солнечная батарея своими руками — затраты значительно уменьшаются, а работает такая конструкция ничуть не хуже, чем панель промышленного производства. Поэтому, если вы всерьез задумываетесь о приобретении альтернативного источника электроэнергии, попытайтесь сделать его своими руками – это не очень сложно.

В статье речь пойдет об изготовлении солнечных батарей. Мы расскажем, какие материалы, и инструменты для этого потребуются. А немного ниже вы найдете пошаговую инструкцию с иллюстрациями, которые наглядно демонстрируют ход работы.

Коротко об устройстве и работе

Энергию солнца можно преобразовать в тепловую, когда энергоносителем является жидкость-теплоноситель или в электрическую, собираемую в аккумуляторах. Батарея представляет собой генератор, работающий на принципе фотоэлектрического эффекта.

Преобразование энергии солнца в электроэнергию происходит после попадания солнечных лучей на пластины-фотоэлементы, которые являются основной частью батареи.

При этом световые кванты “отпускают” свои электроны с крайних орбит. Эти свободные электроны дают электрический ток, который проходит через контроллер и скапливается в аккумуляторе, а оттуда поступает энергопотребителям.

В роли пластин-фотоэлементов выступают элементы из кремния. Кремниевая пластина с одной стороны покрыта тончайшим слоем фосфора или бора – пассивного химического элемента.

В этом месте под действием солнечных лучей высвобождается большое количество электронов, которые удерживаются фосфорной плёнкой и не разлетаются.

На поверхности пластины имеются металлические “дорожки”, на которых выстраиваются свободные электроны, образуя упорядоченное движение, т.е. электрический ток.

Чем больше таких кремниевых пластин-фотоэлементов, тем больше электрического тока можно получить. Подробнее о принципе работы солнечной батареи читайте далее.

Материалы для создания солнечной пластины

Приступая к сооружению солнечной батареи необходимо запастись следующими материалами:

  • силикатные пластины-фотоэлементы;
  • листы ДСП, алюминиевые уголки и рейки;
  • жёсткий поролон толщиной 1,5-2,5 см;
  • прозрачный элемент, выполняющий роль основания для кремниевых пластин;
  • шурупы, саморезы;
  • силиконовой герметик для наружных работ;
  • электрические провода, диоды, клеммы.

Количество требуемых материалов зависит от размера вашей батареи, которая чаще всего ограничивается количеством доступных фотоэлементов. Из инструментов вам понадобиться: шуруповёрт или набор отвёрток, ножовка по металлу и дереву, паяльник. Для проведения испытаний готовой батареи понадобиться тестер-амперметр.

Теперь рассмотрим самые важные материалы более подробно.

Кремниевые пластины или фотоэлементы

Фотоэлементы для батарей бывают трёх видов:

  • поликристаллические;
  • монокристаллические;
  • аморфные.

Поликристаллические пластины характеризуются низким КПД. Размер полезного действия составляет около 10 – 12 %, но зато этот показатель не понижается с течением времени. Продолжительность работы поликристаллов – 10 лет.

Монокристаллические фотоэлементы могут похвастаться более высоким КПД – 13-25% и долгими сроками работы – свыше 25 лет. Однако со временем КПД монокристаллов снижается.

Монокристаллические преобразователи получают путем пиления искусственно выращенных кристаллов, что и объясняет наиболее высокую фотопроводимость и производительность.

Гибкие батареи с аморфным кремнием – самые современные. Фотоэлектрический преобразователь у них напылен или наплавлен на полимерную основу. КПД в районе 5 – 6 %, но пленочные системы крайне удобны в укладке.

Пленочные системы с аморфными фотопреобразователями появились сравнительно недавно. Это предельно простой и максимально дешевый вид, но быстрее соперников теряющий потребительские качества.

Нецелесообразно использовать фотоэлементы разного размера. В данном случае максимальный ток, вырабатываемый батарей, будет ограничен током наиболее маленького по размеру элемента. Значит, более крупные пластины не будут работать на полную мощность.

Чаще всего для самодельных батарей используются моно- и поликристаллические фотоэлементы размером 3х6 дюймов, которые можно заказать в интернет-магазинах типа Е-бай.

Стоимость фотоэлементов достаточно высока, но многие магазины продают так называемые элементы группы В. Изделия, отнесённые к этой группе имеют брак, но пригодны к использованию, а их стоимость ниже, чем у стандартных пластин на 40-60%.

Читайте также:
Грунтовый теплообменник своими руками – изготовление

Большинство интернет-магазинов продают фотоэлементы комплектами по 36 или 72 фотоэлектрической преобразовательной пластины. Для соединения отдельных модулей в батарею потребуются шины, для подключения к системе нужны будут клеммы.

Каркас и прозрачный элемент

Каркас для будущей панели можно сделать из деревянных реек или алюминиевых уголков.

Второй вариант более предпочтителен по целому ряду причин:

  • Алюминий – лёгкий металл, не дающий серьёзной нагрузки на опорную конструкцию, на которую планируется установка батареи.
  • При проведении антикоррозийной обработки алюминий не подвержен воздействию ржавчины.
  • Не впитывает влагу из окружающей среды, не гниёт.

При выборе прозрачного элемента необходимо обратить внимание на такие параметры, как показатель преломления солнечного света и способность поглощать ИК-излучение.

От первого показателя напрямую будет зависеть КПД фотоэлементов: чем показатель преломления ниже, тем выше КПД кремниевых пластин.

Минимальный коэффициент светоотражения у плексиглас или более дешёвого его варианта – оргстекла. Чуть ниже показатель преломления света у поликарбоната.

От величины второго показателя зависит, будут ли нагреваться сами кремниевые фотоэлементы или нет. Чем меньше пластины подвергаются нагреванию, тем дольше они прослужат. ИК-излучения лучше всего поглощает специальное термопоглощающее оргстекло и стекло с ИК-поглощением. Немного хуже – обычное стекло.

Если есть возможность, то оптимальным вариантом будет использование в качестве прозрачного элемента антибликового прозрачного стекла.

Проект системы и выбор места

Проект гелиосистемы включает в себя расчёты необходимого размера солнечной пластины. Как было сказано выше, размер батареи, как правило, ограничен дорогостоящими фотоэлементами.

Гелиобатарея должна устанавливаться под определённым углом, который обеспечил бы максимальное попадание на кремниевые пластины солнечных лучей. Наилучший вариант – батареи, которые могут менять угол наклона.

Место установки солнечных пластин может быть самым разнообразным: на земле, на скатной или плоской крыше дома, на крышах подсобных помещений.

Единственное условие – батарея должна быть размещена на солнечной, не затененной высокой кроной деревьев стороне участка или дома. При этом оптимальный угол наклона необходимо вычислить по формуле или с применением специализированного калькулятора.

Угол наклона будет зависеть от месторасположения дома, времени года и климата. Желательно, чтобы у батареи была возможность менять угол наклона вслед за сезонными изменениями высоты солнца, т.к. максимально эффективно они работают при падении солнечных лучей строго перпендикулярно поверхности.

Расчёты показывают, что 1 квадратный метр гелиосистемы даёт возможность получить 120 Вт. Поэтому путём расчетов можно установить, что для обеспечения среднестатистической семьи электроэнергией в количестве 300 кВт в месяц необходима гелиосистема минимум в 20 квадратных метров.

Сразу установить такую гелиосистему будет проблематично. Но даже монтаж 5-ти метровой батареи поможет сэкономить электроэнергию и внести свой скромный вклад в экологию нашей планеты. Советуем также ознакомиться с принципом расчета необходимого количества солнечных батарей.

Солнечная батарея может использоваться в качестве резервного энергоисточника при частом отключении централизованного энергоснабжения. Для автоматического переключения необходимо предусмотреть систему бесперебойного питания.

Подобная система удобна тем, что при использовании традиционного источника электроэнергии одновременно производится зарядка аккумулятора гелиосистемы. Оборудование обслуживающее гелиобатарею размещается внутри дома, поэтому необходимо предусмотреть для него специальное помещение.

Монтаж солнечной батареи по шагам

Выбрав место для размещения солнечной панели и оборудования для обслуживания гелиосистемы, а также имея в наличии все требуемые материалы и инструменты, можно начинать монтаж батареи.

При монтаже необходимо соблюдать технику безопасности, особенно осуществляя установку готовой панели на крышу дома. Рассмотрим пошаговый алгоритм, как сделать солнечную батарею.

Шаг #1 – пайка контактов кремниевых пластин

Монтаж самодельной солнечной батареи часто начинается с пайки проводников фотоэлементов. Безусловно, если у вас есть возможность, то лучше всего купить фотоэлементы сразу с проводниками, т.к. пайка – очень непростая и кропотливая работа, занимающая много времени.

Пайка осуществляется следующим образом:

  1. Берётся кремниевый фотоэлемент без проводников и металлическая полоса-проводник.
  2. Проводники нарезаются при помощи картонной заготовки, их длина в 2 раза больше, чем размер кремниевой пластины.
  3. Проводник аккуратно выкладывается на пластину. На один элемент – два проводника.
  4. На место, где будет производиться спайка, необходимо нанести кислоту для работы с паяльником.
  5. Произвести пайку при помощи паяльника, аккуратно присоединив проводник к пластине.

В процессе пайки нельзя давить на силикатный элемент, т.к. он очень хрупкий и может разрушиться! Если вам посчастливилось, и вы приобрели фотоэлементы с готовыми контактами, то вы избавите себя от долгой и сложной работы, переходя сразу к изготовлению каркаса для будущей батареи.

Шаг #2 – изготовление каркаса для солнечной батареи

Каркас – это место, куда будут устанавливаться фотоэлементы. Для изготовления каркаса берутся алюминиевые уголки и рейки, из которых складываются рамки. Рекомендуемый размер уголка – 70-90 мм.

На внутреннюю часть металлических уголков наносится силиконовый герметик. Герметизацию уголков необходимо произвести тщательно, от этого зависит долговечность всей конструкции.

После того, как алюминиевая рамка готова, приступаем к изготовлению заднего корпуса. Задний корпус представляет собой деревянный ящик из ДСП с невысокими бортиками.

Высокие борта будут создавать тень на фотоэлементах, поэтому их высота не должна превышать 2 см. Бортики привинчиваются при помощи саморезов и шуруповёрта.

На дне ящика-корпуса из ДСП делаются вентиляционные отверстия. Расстояние между отверстиями примерно 10 см. В алюминиевую раму устанавливается прозрачный элемент (оргстекло, антибликовое стекло, плексиглас).

Прозрачный элемент прижимается и фиксируется, его крепление осуществляется при помощи метизов: 4 по углам, а также по 2 с длинных и по 1 с короткой стороны рамы. Метизы крепятся шурупами.

Каркас для гелиобатареи готов и можно приступать к самой ответственной части – монтажу фотоэлементов. Перед монтажом необходимо очистить оргстекло от пыли и обезжирить спиртсодержащей жидкостью.

Шаг #3 – монтаж кремниевых пластин-фотоэлементов

Монтаж и пайка кремниевых пластин – самая трудоёмкая часть работы по созданию солнечной панели своими руками. Сначала раскладываем фотоэлементы на оргстекло синими пластинами вниз.

Если вы впервые собирайте батарею, то можно воспользоваться подложкой для нанесения разметки, чтобы расположить пластины ровно на небольшом (3-5 мм) расстоянии друг от друга.

  1. Производим пайку фотоэлементов по следующей электросхеме: “+” дорожки расположены на лицевой стороне пластины, “-” – на обратной. Перед пайкой аккуратно наносит флюс и припой, чтобы соединить контакты.
  2. Производим пайку всех фотоэлементов последовательно рядами сверху вниз. Ряды затем должны быть также соединены между собой.
  3. Приступаем к приклеиванию фотоэлементов. Для этого наносим небольшое количество герметика на центр каждой кремниевой пластины.
  4. Переворачиваем получившиеся цепочки с фотоэлементами лицевой стороной (там, где синие пластины) вверх и размещаем пластины по разметке, которую нанесли ранее. Осторожно прижимаем каждую пластину, чтобы зафиксировать её на своём месте.
  5. Контакты крайних фотоэлементов выводим на шину, соответственно “+” и “-“. Для шины рекомендуется использовать более широкий проводник из серебра.
  6. Гелиобатарею необходимо оснастить блокирующим диодом, который соединяется с контактами и предотвращает разрядку аккумуляторов через конструкцию в ночное время.
  7. В дне каркаса сверлим отверстия для вывода проводов наружу.

Провода необходимо прикрепить к каркасу, чтобы они не болтались, сделать это можно используя силиконовый герметик.

Солнечная батарея своими руками – пошаговое руководство по изготовлению

Авторизация на сайте

Солнечная батарея своими руками.

Детальное пошаговое руководство по самостоятельному изготовлению солнечной батареи своими руками.

К сожалению, солнечные батареи недешевы, поэтому самодельную солнечную батарею можно собрать самому. Для

Для изготовления солнечной батареи используем простые инструменты и недорогие подручные материалы, чтобы сделать мощную и самое главное дешевую солнечную батарею.

Что такое солнечная батарея? и с чем ее едят.

Солнечная батарея, это контейнер, состоящий из солнечных элементов.

Солнечные элементы, делают всю работу по преобразованию солнечной энергии в электричество. К сожалению, для получения мощности, достаточной для практического применения, солнечных элементов надо довольно много.

Читайте также:
Изготовление бетонной смеси

Кроме того, солнечные элементы очень хрупкие. Поэтому их и объединяют в Солнечную батарею.

Солнечная батарея содержит достаточное количество солнечных элементов для получения высокой мощности и защищает элементы от повреждения.

Трудности, возникающие при самостоятельном изготовлении солнечной батареи

  • Главное препятствие в изготовлении солнечной батареи – это покупку солнечных элементов за разумную цену.
  • Новые солнечные элементы очень дороги и их сложно найти в нормальном количестве за любые деньги.
  • Дефектные и поврежденные солнечные элементы есть в наличии на интернет аукционе eBay и других местах гораздо дешевле.
  • Солнечные элементы «второго сорта» возможно, могут быть использованы для изготовления солнечной батареи.

Изготовление

Для того чтобы изготовить солнечную батарею максимально дешевой, используем дефектные элементы, и закупаем их например на eBay.

Для изготовления солнечной батареи я купил несколько блоков монокристаллических солнечных элементов размером 3х6 дюйма.

Чтобы сделать солнечную батарею, необходимо соединить последовательно 36 таких элементов.

Каждый элемент генерирует порядка 0,5В. 36 элементов, соединенных последовательно дадут нам около 18В, которые будут достаточны для зарядки батарей на 12В. (Да, такое высокое напряжение действительно необходимо для эффективной зарядки 12В аккумуляторов).

Солнечные элементы этого типа тонкие как бумага, хрупкие и ломкие как стекло. Их очень легко повредить.

Продавец этих элементов окунул наборы из 18 шт. в воск для стабилизации и доставки без повреждений. Воск – это головная боль при его удалении. Если у вас есть возможность, ищите элементы, не покрытые воском. Но помните, что они могут получить больше повреждений при транспортировке.

Заметьте, что мои элементы уже имеют припаянные проводники. Ищите элементы с уже припаянными проводниками. Даже с такими элементами вам нужно быть готовым много поработать паяльником. Если же вы купите элементы без проводников, приготовьтесь работать паяльником раза в 2-3 больше. Короче, лучше переплатить за уже припаянные провода.

Также я купил пару наборов элементов без заливки воском у другого продавца. Эти элементы пришли упакованные в пластиковую коробку. Они болтались в коробке и немного обкололись по бокам и углам. Незначительные сколы не имеют особого значения. Они не смогут снизить мощность элемента настолько, чтобы об этом надо было беспокоиться. Купленных мной элементов должно хватить на сборку двух солнечных батарей. Зная, что возможно сломаю парочку при сборке, поэтому купил чуть больше.

Солнечные элементы продаются самого широкого спектра форм и размеров. Вы можете использовать более крупные или мелкие, чем мои 3х6 дюймов.

  • Элементы одного типа производят одинаковое напряжение независимо от их размера. Поэтому для получения заданного напряжения всегда потребуется одинаковое количество элементов.
  • Большие по размеру элементы могут генерировать больший ток, а меньшие по размеру, соответственно – меньший ток.
  • Общая мощность вашей батареи определяется как ее напряжение умноженное на генерируемый ток.

Использование больших по размеру элементов позволит получить большую мощность при том же напряжении, но батарея получится крупнее и тяжелее. Использование меньших элементов позволит уменьшить и облегчить батарею, но не сможет обеспечить такую же мощность.

Также стоит отметить, что использование в одной батарее элементов разных размеров – плохая идея. Причина в том, что максимальный ток, генерируемый вашей батареей, будет ограничен током самого маленького элемента, а более крупные элементы не будут работать в полную силу.

Солнечные элементы, на которых я остановил выбор, имеют размер 3х6 дюйма и способны генерировать ток примерно 3 ампера. Я планирую соединить последовательно 36 таких элементов, чтобы получить напряжение чуть больше 18 вольт. В результате должна получиться батарея, способная выдавать мощность порядка 60 ватт на ярком солнце.

Звучит не сильно впечатляюще, но все же это лучше чем ничего. При чем, это 60Вт каждый день, когда светит солнце. Эта энергия будет идти на зарядку аккумулятора, который будет использоваться для питания светильников и небольшой аппаратуры всего несколько часов после наступления темноты.

Корпус солнечной батареи представляет собой неглубокий ящик из фанеры, чтобы борта не затеняли солнечные элементы, когда солнце светит под углом. Сделать его мо он из фанеры толщиной 3/8 дюйма с бортиками из реек толщиной 3/4 дюйма. Бортики приклеены и привинчены на место.

Батарея будет содержать 36 элементов размером 3х6 дюймов.

Разделяем их на две группы по 18 шт. просто для того, чтобы их было проще паять в будущем. Отсюда и центральная планка посередине ящика.

Небольшой набросок, показывающий размеры солнечной батареи.

Все размеры указаны в дюймах . Бортики толщиной 3/4 дюйма идут вокруг всего листа фанеры. Такой же бортик идет по центру и делит батарею на две части.

Вид одной из половин моей будущей батареи.

В этой половине будет размещена первая группа из 18 элементов. Обратите внимание на небольшие отверстия в бортиках. Это будет нижняя часть батареи (на фото верх находится внизу). Это вентиляционные отверстия, предназначенные для выравнивания давления воздуха внутри и снаружи солнечной батареи и служащие для удаления влаги. Эти отверстия должны быть только внизу батареи, иначе дождь и роса попадут внутрь. Такие же вентиляционные отверстия должны быть сделаны в центральной разделительной планке.

Далее вырезаем два подходящих по размеру куска ДВП. Они будут служить подложками, на которых будут собираться солнечные элементы. Они должны свободно помещаться между бортиками.

Не обязательно использовать именно перфорированные листы ДВП, просто у меня оказались такие под рукой. Пойдет любой тонкий, жесткий и не проводящий ток материал.

Чтобы защитить батарею от погодных неприятностей, лицевую сторону закрываем оргстеклом.

На фото два листа оргстекла соединенные на центральной перегородке. Сверлим отверстия вокруг кромки, чтобы посадить оргстекло на шурупы. Будьте осторожны, сверля отверстия возле кромки оргстекла.

Не давите сильно – иначе сломается, а коли уж сломаете, то приклейте отломавшийся кусок и просверлите недалеко от него новое отверстие.

Красим все деревянные части солнечной батареи в 2-3 слоя, чтобы защитить их от воздействия окружающей среды. Ящик и подложки красим с 2-х сторон внутри и снаружи.

Основа для солнечной батареи готова, и самое время подготовить солнечные элементы.

Как и было сказано выше, удаление воска с солнечных элементов – это настоящая головная боль.

Для эффективного удаления воска с солнечных элементов, используйте следующий способ:

1) Купаем солнечные элементы в горячей воде, чтобы растопить воск и отделить элементы друг от друга. Не дайте воде закипеть, иначе пузырьки пара будут сильно бить элементы один о другой. Кипящая вода также может быть слишком горячей, в элементах могут быть нарушены электрические контакты.

Рекомендую погружать элементы в холодную воду, а потом медленно их нагревать, чтобы исключить неравномерный нагрев. Пластиковые щипцы и лопатка помогут отделить элементы, когда воск растает. Постарайтесь сильно не тянуть за металлические проводники – могут порваться.

На фото показана финальная версия «установки» которую я использовал.

Первая «горячая ванна» для растапливания воска находится на заднем плане справа. На переднем плане слева – горячая мыльная вода, а справа – чистая горячая вода. Температуры во всех кастрюлях ниже температуры кипения воды. Сначала в дальней кастрюле растапливаем воск, переносим элементы по одному в мыльную воду, чтобы удалить остатки воска, после чего промываем в чистой воде.

2) Выкладываем элементы для просушки на полотенце. Вы можете менять мыльную воду и воду для промывки почаще. Только не сливайте использованную воду в канализацию, т.к. воск затвердеет и засорит сток. Этот процесс удалил практически весь воск с солнечных элементов. Только на некоторых остались тонкие пленки, но это не помешает пайке и работе элементов. Промывка растворителем, возможно, удалит остатки воска, но это может быть опасно и зловонно.

Читайте также:
Водогрейные газовые котлы: виды, ошибки, не греют воду

Несколько разделенных и очищенных солнечных элементов сушатся на полотенце. После разделения и удаления защитного воска из-за своей хрупкости они стали удивительно сложными в обращении и хранении, оставляем их их в воске до тех пор, пока вы не будете готовы установить их в солнечную батарею.

Делаем основу для солнечной батареи. У меня же пришло уже время установить их.

Рисуем сетку на каждой основе, для упрощения процесса установки каждого элемента.

Выкладываем элементы по этой сетке обратной стороной вверх, так их можно спаять вместе. Все 18 элементов для каждой половины батареи должны быть соединены последовательно, после чего обе половины также должны быть соединены последовательно для получения требуемого напряжения.

Спаивать элементы между собой поначалу сложно. Начинайте только с двух элементов. Разместите соединительные проводники одного из них так, чтобы они пересекали точки пайки на обратной стороне другого. Обязательно убедиться, что расстояние между элементами соответствует разметке.

Для пайки используем маломощный паяльник и прутковый припой с сердцевиной из канифоли.

Повторять пайку пришлось до тех пор, пока не получилась цепочка из 6-ти элементов. Соединительные шины от сломанных элементов я припаял к обратной стороне последнего элемента цепочки. Таких цепочек я сделал три, повторив процедуру еще дважды. Всего 18 элементов для первой половины батареи.

Три цепочки элементов должны быть соединены последовательно. Поэтому среднюю цепочку поворачиваем на 180 градусов по отношению к двум другим. Ориентация цепочек получилась правильной (элементы все еще лежат обратной стороной вверх на подложке). Следующий шаг – приклеивание элементов на место.

Приклеивание элементов потребует некоторой сноровки. Наносим небольшую каплю силиконового герметика в центре каждого из шести элементов одной цепочки. После этого переворачиваем цепочку лицевой стороной вверх и размещаем элементы по разметке, которую нанесли раньше. Легонько прижмите элементы, надавливая по центру, чтобы приклеить их к основе. Сложности возникают в основном при переворачивании гибкой цепочки элементов. Вторая пара рук тут не повредит.

Не наносите слишком много клея и не приклеивайте элементы нигде кроме центра. Элементы и подложка, на которой они смонтированы, будут расширяться, сжиматься, гнуться и деформироваться при изменении температуры и влажности. Если вы приклеите элемент по всей площади, он со временем сломается. Приклеивание только в центре дает элементам возможность свободно деформироваться отдельно от основы. Элементы и основа могут деформироваться по-разному и элементы не сломаются.

Вот полностью собранная половина батареи. Была использована медная оплетку от кабеля для соединения первой и второй цепочки элементов.

Можно использовать специальные шины или даже обычные провода. Просто у меня под рукой была медная оплетка от кабеля. Такое же соединение делаем с обратной стороны между второй и третьей цепочкой элементов. Каплей герметика я прикрепил провод к основанию, чтобы он не «гулял» и не гнулся.

Тест первой половины солнечной батареи на солнце.

При слабом солнце в дымке эта половина генерирует 9,31 В. Ура! Работает! Теперь мне нужно сделать еще одну такую же половину батареи.

После того как обе основы с элементами будут готовы, их можно будет установить их на место в подготовленную коробку и соединить.

Каждая из половин помещается на свое место. Для крепления основы с элементами внутри батареи используем 4 небольших шурупа.

Провод для соединения половин батареи пропускаем через одно из вентиляционных отверстий в центральном бортике. Тут тоже пара капель герметика поможет закрепить провод на одном месте и предотвратить его болтание внутри батареи.

Каждая солнечная батарея в системе должна быть снабжена блокирующим диодом, соединенным последовательно с батареей.

Диод нужен для предотвращения разряда аккумуляторов через батарею ночью и в пасмурную погоду.

Я использовал диод Шоттки на 3,3А. Диоды Шоттки имеют гораздо более низкое падение напряжения, чем обычные диоды.

Соответственно, будут меньше потери мощности на диоде. Набор из 25 диодов марки 31DQ03 на eBay можно купить всего за пару баксов.

Диоды подсоединяем к солнечным элементам внутри батареи.

Сверлим отверстие в днище батареи ближе к верху, чтобы вывести провода наружу. Провода завязаны на узел, чтобы предотвратить их вытягивание из батареи, и закреплены все тем же герметиком.

Важно дать герметику высохнуть до того, как мы будем крепить оргстекло на место. Советую, опираясь на предыдущий опыт. Испарения из силикона могут образовать пленку на внутренней поверхности оргстекла и элементов, если вы не дадите силикону высохнуть на открытом воздухе.

И еще немного герметика для герметизации выходного отверстия.

Вот как выглядит законченная солнечная батарея с прикрученным экраном из оргстекла.

Тестирование солнечной батареи

Не спешите герметизировать оргстекло, для начало нужно провести несколько тестов, чтобы убедиться в отсутствии проблем, проверить все контакты.

Вот результаты тестирования напряжения законченной батареи на ярком зимнем солнце. Вольтметр показывает 18,88В без нагрузки.

А вот тест по току в тех же условиях (яркое зимнее солнце). Амперметр показывает 3,05А – ток короткого замыкания. Это как раз недалеко от расчетного тока элементов. Солнечная батарея прекрасно работает!

Солнечная батарея в работе

Перемещаем ее пару раз в день для сохранения ориентации на солнце, но это не такая уж и большая сложность.

Стоимость изготовления солнечной батареи

Считаем только стоимость основных материалов, подручные (куски дерева, провода

    Солнечные элементы купленные на eBay 74.00$ (

2300 руб.)
Деревяшки – 15$ (

460 руб.)
Оргстекло 15$(

460 руб.)
Шурупы и саморезы – 2$ (

60 руб.)
Силиконовый герметик – 3.95$ (

300 руб.)
Диоды 2 $(

60 руб.)
Краска 5$(

Для сравнения, аналогичная по мощности солнечная батарея промышленного производства стоит порядка 300-600$ (

Солнечная батарея своими руками

Солнечные лучи, как альтернативный источник энергии, приобретают все более широкую популярность среди населения. Особенно это касается жителей частного сектора, постепенно избавляющихся от энергетической зависимости. Однако подобные системы еще довольно дороги и не все могут их приобрести. В таких ситуациях наилучшим выходом становится солнечная батарея изготовленная своим руками из подручных материалов.

  1. Выбор фотоэлементов
  2. Расчет и проектирование
  3. Формула для расчета
  4. Выбор места установки
  5. Подготовка материалов и инструмента
  6. Как собрать солнечную батарею своими руками
  7. Сборка корпуса солнечной батареи
  8. Пайка проводов и соединение фотоэлементов
  9. Нанесение герметизирующего слоя
  10. Окончательная сборка солнечной панели

Выбор фотоэлементов

Любая солнечная батарея для дома сделанная своими руками, будет в любом случае стоить значительно ниже, чем заводская. У известных производителей производится тщательный отбор фотоэлементов, в процессе которого отсеиваются заготовки, имеющие пониженные или нестабильные показатели. Поверхность готовых изделий покрывается специальным стеклом, снижающим отражение света, отсутствующим в свободной продаже. В производстве применяются многие другие методы исследования пластинок, совершенно не подходящие для домашних условий.

Однако, солнечная батарея своими руками вполне может быть изготовлена, а полученные самоделки обладают хорошей работоспособностью и не столь заметно отличаются от изделий промышленного производства. Зато экономия денежных средств получается практически в два раза, и в определенных условиях делать панели не только целесообразно, но и выгодно.

Следовательно, основная цель на стадии подготовки заключается в правильном выборе наиболее подходящих фотоэлементов. По техническим причинам пленочные или аморфные изделия можно сразу же исключить и остановиться на пластинках их кремниевых кристаллов. В самых первых домашних опытах рекомендуется воспользоваться более дешевыми элементами из поликристаллов и лишь потом переходить к работе с монокристаллическими кремниевыми материалами.

Приобрести фотоэлементы для солнечной батареи возможно на известных зарубежных торговых площадках, таких как Алиэкспресс, Амазон и других. Они находятся там в свободной продаже в виде отдельных пластинок с различной производительностью и габаритными размерами, что позволяет собрать солнечную панель требуемой мощности.

Читайте также:
Инструкция по посадки туи

Кроме того, существуют бракованные изделия, относящиеся к так называемому классу В, имеющие различные повреждения в виде небольших сколов и трещин. На производительность это почти не влияет, зато их стоимость значительно ниже, поэтому они чаще всего используются в самодельных гелиосистемах.

Выбор пластинок прежде всего осуществляется по их внешнему виду. Монокристаллические элементы имеют однотонную поверхность темно-синего цвета, на которой расположена хорошо заметная электродная сетка. В поликристаллических пластинках поверхность покрыта более светлым узором, образованным многочисленными мелкими кристалликами. Подробнее чем отличаются монокристаллические панели от поликристаллических читайте здесь https://electric-220.ru/news/monokristallicheskie_i_polikristallicheskie_solnechnye_batarei/2018-12-26-1624

Расчет и проектирование

Для расчетов солнечной батареи, собранной дома, обязательно потребуется перечень всех электроприборов и оборудования, имеющихся в доме. Сразу же нужно выяснить потребляемую мощность каждого из них.

Данные о мощности указываются в маркировке или в техническом паспорте устройства. Их значения довольно приблизительные, поэтому для панели, работающей с инвертором нужно ввести поправку, то есть среднее энергопотребление умножается на поправочный коэффициент. Полученная таким образом общая мощность дополнительно умножается на 1,2, учитывая потери при работе инвертора. Мощные приборы при запуске потребляют ток, в несколько раз превышающий номинальный. В связи с этим, инвертор также должен в течение короткого времени выдерживать двойную или тройную мощность.

Если мощных потребителей довольно много, но одновременно они практически не включаются, то применяемый в системе инвертор с большим выходным током получится слишком дорогим. При отсутствии значительных нагрузок рекомендуется использовать менее мощные недорогие приборы.

Солнечная батарея в домашних условиях рассчитывается по времени работы каждого электроприбора в течение суток. Вычисленное опытным путем, значение умножается на мощность, и в результате получается суточное энергопотребление, измеряемое в киловатт-часах.

Обязательно понадобятся сведения с местной метеостанции о количестве солнечной энергии, которую можно реально получить в этой местности. Расчет данного показателя выполняется на основе показаний среднегодовой солнечной радиации и ее среднемесячных значений при самой плохой погоде. Последняя цифра позволяет определить минимальное количество электроэнергии, достаточное для решения текущих задач.

Получив исходные данные можно приступать к определению мощности одного фотоэлемента. Вначале показатель солнечной радиации нужно разделить на 1000, в результате, получаются так называемые пикочасы. В это время интенсивность солнечного свечения составляет 1000 Вт/м 2 .

Формула для расчета

Количество энергии W, вырабатываемое одним модулем, определяется по следующей формуле: W = k*Pw*E/1000, в которой Е – величина солнечной инсоляции за определенный период времени, k – коэффициент, составляющий летом – 0,5, зимой – 0,7, Pw – мощность одного модуля. Поправочный коэффициент учитывает потери мощности фотоэлементов при нагревании солнечными лучами, а также изменение наклона лучей относительно поверхности в течение дня. Зимой элементы нагреваются меньше, поэтому и значение коэффициента будет выше.

Учитывая суммарную мощность энергопотребления и данные, полученные с помощью формулы, рассчитывается общая мощность фотоэлементов. Полученный результат делится на мощность 1 элемента и в итоге будет требуемое количество модулей.

Существуют различные модели с целым рядов мощностей элементов – от 50 до 150 Вт и выше. Выбирая компоненты с необходимыми показателями, можно собрать солнечную панель с заданной мощностью. Например, если потребность в электроэнергии составляет 90 Вт, то необходимы два модуля по 50 Вт каждый. По такой схеме можно создать любую комбинацию из имеющихся фотоэлементов. В любом случае расчеты следует производить с некоторым запасом.

Количество фотоэлементов оказывает влияние на выбор емкости аккумуляторной батареи, поскольку именно они создают зарядный ток. Если мощность панели 100 Вт, то минимальная емкость АКБ должна быть 60 А*ч. С возрастанием мощности панелей потребуются и более мощные аккумуляторы.

Выбор места установки

Производительность солнечных панелей во многом зависит от места их установки. Поэтому, перед тем как сделать солнечную батарею своими руками, нужно заранее определиться, где она будет расположена.

Одновременно, следует учитывать следующие факторы:

  • Степень затененности. Если вокруг панели находятся здания, заросли деревьев и прочие габаритные предметы, создающие тень, она не сможет нормально функционировать и вырабатывать достаточное количество электроэнергии. Кроме того, панель может очень быстро прийти в негодность, не оправдав расходы на ее изготовление.
  • Ориентирование панелей относительно солнца. Световой поток, создаваемый солнечными лучами, должен максимально захватывать поверхность фотоэлементов. Жители северного полушария направляют панель главной стороной на юг, а в южном полушарии ориентация выполняется строго на север.
  • Угол наклона. Также выбирается в зависимости от положения и местных координат и устанавливается в соответствии с широтой. Для расчетов угла установки панели в интернете существуют онлайн-калькуляторы, выдающие наиболее подходящий градус.
  • Наличие свободного доступа для чистки, ремонта и обслуживания. В процессе эксплуатации лицевая поверхность панели постепенно покрывается пылью, грязью, а зимой – снегом. В результате, ее эффективность заметно снижается. В некоторых случаях требуется полная замена солнечных батарей. Поскольку очистка будет выполняться самостоятельно, батарею желательно устанавливать в удобном и доступном для себя месте.

Подготовка материалов и инструмента

Прежде чем начинать изготовление солнечных батарей своими руками, необходимо заготовить все требующиеся материальные ресурсы и инструменты:

  • Пластинки фотоэлементов.
  • Диоды Шоттки для шунтирования фотоэлектрических элементов.
  • Специальные шины или многожильный медный провод для соединения модулей между собой.
  • Антибликовое стекло хорошего качества или плексиглас. Любые препятствия на пути солнечных лучей приводят к росту потерь энергии. Преломление света должно быть минимальным.
  • Все материалы, необходимые для пайки.
  • Фанера, рейки или алюминиевые уголки для сборки каркаса.
  • Силиконовый герметик.
  • Метизы, крепления.
  • Защитный состав или краска, чтобы обработать деревянные поверхности.
  • Обычные инструменты – отвертки, кисти малярные, стеклорез, паяльник, ножовки по дереву и металлу и другие приспособления для конкретной ситуации.

Самая первая солнечная батарея собранная своими руками из подручных материалов должна изготавливаться из пластинок, к которым уже припаяны выводы. За счет этого снижается риск их повреждений во время сборки. Если же имеется опыт работы с паяльником, то будет дешевле купить обычные фотоэлементы и самостоятельно припаять к ним провода. По результатам расчетов заранее известно, какие пластинки будут соединяться последовательно, а какие – параллельно. Лучше всего составить предварительную схему подключения или макет и по ней делать монтаж.

Размеры каркаса определяются в соответствии с размерами ячеек. Между каждым элементом оставляется тепловой зазор 3-5 мм, а сама рамка не должна перекрывать края элементов.

Как собрать солнечную батарею своими руками

Сборка корпуса солнечной батареи

Сборка солнечных батарей, а именно, корпуса может выполняться в разных вариантах. В первом случае ее можно сделать из фанерных листов и деревянных реек, поэтому такой монтаж не представляет особой сложности. Конструкции выпиливаются по размерам, а затем соединяются между собой саморезами. Все стыки и швы предварительно промазываются герметиком. Все деревянные части покрываются краской или специальными защитными составами. Дальнейшие работы проводятся только после полного высыхания конструкции.

Немного сложнее изготовить солнечную батарею из алюминиевого уголка. В этом случае сборка каркаса происходит в следующем порядке:

  • Сборка из уголка прямоугольного каркаса.
  • В каждом углу конструкции сверлятся отверстия под крепления.
  • Внутренняя часть профиля по всему периметру покрывается силиконовым герметиком.
  • Внутрь каркаса на обработанные места укладывается текстолит или оргстекло, вырезанные по размеру. Их нужно как можно плотнее прижать к уголкам.
  • Внутри корпуса лист прозрачного материала фиксируется крепежными уголками, установленными по углам.
  • Дальнейшие работы проводятся после полного высыхания герметика. Предварительно, все внутренние поверхности протираются от пыли и загрязнений.

Пайка проводов и соединение фотоэлементов

Все элементы для солнечных батарей отличаются повышенной хрупкостью и требуют аккуратного обращения. Перед началом пайки они протираются, чтобы поверхность была идеально чистой. Элементы с припаянными проводниками все равно следует проверить и устранить обнаруженные недостатки.

Читайте также:
Биотуалет в доме без канализации: как выглядит, как работает, достоинства и недостатки

На каждой фотопластинке имеются контакты с различной полярностью. Вначале проводники припаиваются к ним, а уже потом соединяются между собой.

При использовании шин вместо проводов, необходимо учитывать следующие особенности:

  • Шины размечаются и разрезаются на требуемое количество полосок.
  • Контакты пластин протираются спиртом, после чего на них наносится тонкий слой флюса, с одной стороны.
  • Шина прикладывается по всей длине контакта, после чего по ней нужно провести разогретым паяльником.
  • Пластина переворачивается, и такая же операция повторяется на другой стороне.

Паяльник во время монтажа нельзя сильно прижимать к пластине, иначе она может лопнуть. На лицевой стороне после пайки не должно оставаться неровностей. Если они остались, нужно еще раз пройти паяльником по шву.

Чтобы не ошибиться с размещением пластин, перед тем как их собирать, на поверхность листа рекомендуется нанести разметку с учетом всех размеров и зазоров. После этого фотоэлементы укладываются на свои места. Затем контакты панелей соединяются между собой с обязательным соблюдением полярности.

Нанесение герметизирующего слоя

Перед тем как самому герметизировать конструкцию, нужно выполнить тестирование и проверить солнечные батареи на работоспособность. Она выносится на солнце, после чего на выводах шин замеряется напряжение. Если оно в пределах нормы, можно приступать к нанесению герметика.

Один из наиболее подходящих вариантов предполагает следующие действия:

  • Силиконовый герметик наносится на самодельные солнечные батареи капельками по краям корпуса и между пластинами. После этого края фотоэлементов аккуратно прижимаются к прозрачному основанию и должны прилегать к нему как можно плотнее.
  • На каждый край пластинок укладывается небольшой груз, после чего герметик полностью высыхает, а фотоэлементы надежно фиксируются.
  • В самом конце аккуратно промазываются края рамки и все стыки между пластинами. На данном этапе герметиком покрывается все, кроме самих пластинок, он не должен попасть на их оборотную сторону.

Окончательная сборка солнечной панели

После всех операций остается лишь полностью собрать солнечную батарею в домашних условиях.

В этом случае порядок действий будет следующий:

  • В боковой части корпуса устанавливается соединительный разъем, к которому подключаются диоды Шоттки.
  • С лицевой стороны вся сборка пластинок солнечной батареи закрывается прозрачным защитным экраном и герметизируется, чтобы исключить попадание влаги внутрь конструкции.
  • Для обработки лицевой стороны рекомендуется использовать специальный лак, например, PLASTIK-71.
  • После сборки выполняется окончательная проверка, после чего солнечная батарея из подручных средств сделанная своими руками может устанавливаться на свое место.

Как сделать солнечную батарею своими руками

Изготовление солнечной батареи для дома своими руками

Основой солнечной батареи являются фотоэлектрические преобразователи (солнечные модули), которые обращают энергию солнечного света в электричество. Для того, чтобы в доме пользоваться бытовыми приборами за счет солнечной батареи, таких модулей должно быть достаточно много.

  • Выбор комплектующих для изготовления ↓
  • Технология изготовления своими руками ↓
  • Сборка корпуса ↓
  • Соединение фотоэлементов ↓
  • Герметизация солнечной панели ↓
  • Финальная сборка солнечной батареи ↓
  • Преимущества и недостатки солнечной батареи ↓
  • Установка ↓
  • Схема электроснабжения дома ↓

Энергии, вырабатываемой одним модулем, недостаточно для удовлетворения энергетических потребностей. Между собой фотоэлектрические преобразователи связаны одной последовательной цепью.

Части, из которых состоит солнечная батарея:

  1. Солнечные модули,объединенные в рамки.В одной рамке объединяются от единиц до нескольких десятков фотоэлектрических элементов. Для обеспечения электроэнергией целого дома понадобится несколько панелей с элементами.
  2. Аккумулятор. Служит для накопления получаемой энергии, которую затем можно использовать в темное время суток.
  3. Контроллер. Он следит за разрядкой и зарядкой аккумулятора.
  4. Инвертор. Преобразует постоянный ток, полученный от солнечных модулей в переменный.

Солнечный модуль (или фотоэлектрический элемент) основан на принципе p-n перехода, и по своему устройству очень напоминает транзистор. Если у транзистора спилить шляпку и на поверхность направить солнечные лучи, то подключенным к нему прибором можно определить мизерный электрический ток. Солнечный модуль работает по такому же принципу, только поверхность перехода у солнечного элемента значительно больше.

Как и многие типы транзисторов, солнечные элементы изготавливаются из кристаллического кремния.

По технологии изготовления и материалам различают три вида модулей:

  1. Монокристаллические. Изготовлены в виде цилиндрических кремниевых слитков. Преимущества элементов заключается в высокой производительности, компактности и в наибольшем сроке службы.
  2. Тонкопленочные. Делается напыление слоев фотоэлектрического преобразователя на тонкую подложку. КПД тонкопленочных модулей относительно невысок (7-13%).
  3. Поликристаллические. Расплавленный кремний заливается в квадратную форму, затем остуженный материал режется на квадратные пластинки. Внешне отличаются от монокристаллических модулей тем, что края углов у поликристаллических пластин не обрезаны.

Аккумулятор. В солнечных батареях наибольшее применение нашли свинцово-кислотные аккумуляторы. Стандартный аккумулятор имеет напряжение 12 вольт, для получения большего напряжения собирают аккумуляторные блоки. Так можно собрать блок напряжением 24 и 48 вольт.

Контроллер заряда солнечных батарей. Контроллер заряда действует по принципу регулятора напряжения в автомобиле. В основном солнечные панели на 12 вольт выдают напряжение от 15 до 20 вольт, и без контроллера могут быть повреждены перегрузкой. При 100% заряженном аккумуляторе контроллер отключает модули и предохраняет аккумулятор от закипания.

Инвертор. Солнечные модули вырабатывают постоянный ток, а для использования бытовых приборов и техники требуется переменный ток и напряжение 220 вольт. Инверторы предназначены для преобразования постоянного тока, делая его переменным.

Выбор комплектующих для изготовления

Чтобы снизить себестоимость солнечной станции, нужно попробовать собрать ее самостоятельно. Для этого потребуется закупить необходимые комплектующие, какие-то элементы можно изготовить самому.

Самостоятельно получится собрать:

  • рамки с фотоэлектрическими преобразователями;
  • контроллер зарядки;
  • инвертор напряжения;

Самые большие затраты будут связаны с приобретением самих солнечных элементов. Детали можно заказать из Китая или на eBay, такой вариант обойдется дешевле.

Благоразумно приобретать работоспособные преобразователи с повреждениями и дефектами – они просто забракованы производителем, но вполне исправны. Нельзя покупать элементы разных размеров и мощности – максимальный ток солнечной батареи будет ограничен током самого малого элемента.

Для изготовления рамки с солнечными элементами потребуется:

  • алюминиевый профиль;
  • солнечные элементы (обычно 36 штук для одной рамки);
  • паяльник;
  • припой и флюс;
  • дрель;
  • крепежные делали;
  • силиконовый герметик;
  • медная шина;
  • лист прозрачного материала (оргстекло, поликарбонат, плексиглас);
  • лист фанеры или текстолита(оргстекла);
  • диоды Шоттки;

Технология изготовления своими руками

Для сборки солнечной батарей потребуется:

  1. Сконструировать рамку (корпус).
  2. Спаять все солнечные элементы в параллельную цепь.
  3. Закрепить солнечные элементы на рамке.
  4. Сделать корпус герметичным – прямое попадание атмосферных осадков на фотоэлектрические элементы недопустимо.
  5. Разместить батарею в районе наибольшей солнечной освещенности.

Для удовлетворения энергетических потребностей частного дома одной солнечной панели (рамки) будет недостаточно. Исходя из практики, с одного квадратного метра солнечной панели можно получить 120 Вт мощности. Для нормального энергообеспечения жилого дома потребуется где-то 20 кв. м. площади солнечных элементов.

Чаще всего батареи размещают на крыше дома с солнечной стороны.

Сборка корпуса

Корпус можно собирать из фанерного листа и реек, или из алюминиевых уголков и листа и оргстекла (текстолита). Необходимо определиться, сколько элементов будет размещаться в рамке. Следует учитывать, что между элементами необходим зазор в 3-5 мм, и размер рамки рассчитывается с учетом этих расстояний. Расстояние необходимо для того, чтобы при тепловом расширении пластины не прикасались друг с другом.

Сборка конструкции из алюминиевого профиля и оргстекла:

  • из алюминиевого уголка делается прямоугольный каркас;
  • По углам в алюминиевом корпусе сверлятся отверстия для крепежа;
  • на внутреннюю часть профиля корпуса наносится силиконовый герметик по всему периметру;
  • в раму устанавливается лист оргстекла (текстолита) и плотно прижимается к раме;
  • по углам корпуса с помощью шурупов ставятся крепежные уголки, которые надежно фиксируют лист прозрачного материала в корпусе;
  • герметику дают основательно высохнуть;
Читайте также:
5 проблем, с которыми можно справиться самостоятельно, не вызывая сантехника

Все, корпус готов. Перед размещением солнечных элементов в корпусе необходимо тщательно протереть поверхность от грязи и пыли.

Соединение фотоэлементов

Обращаясь с фотоэлектронными элементами, следует помнить, что они очень хрупкие и требуют бережного отношения. Перед соединением пластин в последовательную цепочку их сначала тщательно, но аккуратно протирают– пластины должны быть идеально чистыми.

Если фотоэлементы были куплены уже с припаянными проводниками, это упрощает процесс соединения модулей. Но перед сборкой в этом случае необходимо проверить качество готовой пайки, и если есть неровности – устранить их.

На фотоэлектрических пластинах предусмотрены контакты по обеим сторонам – это контакты разной полярности. Если проводники(шины) еще не припаяны, необходимо сначала припаять их к контактам пластин, а затем уже соединить фотоэлектрические элементы между собой.

Чтобы припаять шины к фотоэлектрическим модулям, нужно:

  1. Отмерить нужную длину шины и нарезать на куски нужное количество полосок.
  2. Протереть контакты пластин спиртом.
  3. Тонким слоем нанести на контакт флюс по всей длине контакта с одной стороны.
  4. Приложить шину точно по длине контакта и разогретым паяльником медленно провести по всей поверхности пайки.
  5. Перевернуть пластину и повторить все операции пайки на другой стороне.

Что нужно сделать, чтобы правильно и точно произвести соединение фотоэлектрических элементов:

  1. Если нет опыта в сборке элементов, рекомендуется воспользоваться разметочной поверхностью, на которой следует разместить элементы (фанерный лист).
  2. Расположить солнечные панели строго по разметке. Размечая, не забывать оставлять расстояние между элементами 5 мм.
  3. Пропаивая контакты пластин, обязательно следить за полярностью. Фотоэлементы должны быть правильно собраны в последовательную цепочку, иначе батарея не будет нормально работать.

Механический монтаж панелей:

  1. В корпусе сделать разметку для пластин.
  2. Солнечные элементы поместить в корпус, положив их на оргстекло. В рамке закрепить силиконовым клеем по размеченным местам. Клея много не наносить, только крохотную каплю по центру пластины. Нажимать осторожно, чтобы не повредить пластины.В корпус лучше перемещать пластины вдвоем, одному будет неудобно.
  3. Соединить все провода по краям пластин с общими шинами.

Герметизация солнечной панели

Прежде чем герметизировать панель, нужно протестировать качество пайки. Конструкцию аккуратно выносят поближе к солнечному свету и замеряют напряжение на общих шинах. Оно должно быть в пределах ожидаемых значений.

Как вариант, герметизацию можно провести следующим образом:

  1. Нанести капельки силиконового герметика между пластинами и по краям корпуса, аккуратно пальцами руки края фотоэлементов прижать к оргстеклу. Нужно, чтобы элементы как можно плотнее легли к прозрачному основанию.
  2. Поставить на все края элементов небольшой груз, допустим, головки из автомобильного набора инструментов.
  3. Дать герметику хорошо высохнуть, пластины за это время надежно зафиксируются.
  4. Затем промазать аккуратно все стыки между пластинами и краями рамки. То есть, нужно промазать в корпусе все, кроме самих пластин. Попадание герметика на края тыльной стороны пластин допустимо.

Финальная сборка солнечной батареи

  1. Сбоку корпуса установить соединительный разъем, разъем соединить с диодами Шоттки.
  2. Закрыть с наружной стороны пластины защитным экраном из прозрачного материала. В данном случае, оргстеклом. Конструкция должна быть герметичной и исключать проникновение в нее влаги.
  3. Лицевую сторону (оргстекло) желательно обработать, например, лаком (лак PLASTIK-71).

Для чего нужен диод Шоттки? Если свет падает только на часть солнечной батареи, а другая часть затемнена, возможен выход элементов из строя.

Диоды помогают избежать поломки конструкции в таких случаях. При этом теряется мощность на 25%, но без диодов не обойтись – они шунтируют ток, ток идет в обход фотоэлементов. Чтобы падение напряжения было минимальным, необходимо применять низкоомные полупроводники, такими являются диоды Шоттки.

Преимущества и недостатки солнечной батареи

У солнечных батарей есть как преимущества, так и недостатки. Если бы были только одни плюсы от применения фотоэлектрических преобразователей, весь мир давно бы уже перешел на этот вид получения электроэнергии.

Преимущества:

  1. Автономность источника питания, нет зависимости от перебоев напряжения в централизованной электросети.
  2. Отсутствие абонентской платы за использование электроэнергией.

Недостатки:

  1. Высокая себестоимость оборудования и элементов.
  2. Зависимость от солнечного освещения.
  3. Возможность повреждения элементов солнечной батареи вследствие неблагоприятных погодных условий (град, буря, ураган).

В каких случаях целесообразно использовать установку на фотоэлектрических элементах:

  1. Если объект (дом или дача) находится на большом удалении от линии электропередач. Это может быть загородный коттедж в сельской глубинке.
  2. Когда объект расположен в южном солнечном районе.
  3. При совмещении различных видов энергии. Например, отопление частного дома с помощью печного отопления и солнечной энергии. Себестоимость маломощной солнечной станции будет не столь высока, и может быть экономически оправдана в данном случае.

Установка

Монтировать батарею необходимо по месту максимальной освещенности солнечным светом. Панели могут крепиться на крыше дома, на жестком или поворотном кронштейне.

Лицевая часть солнечной батареи должна быть обращена на юг или юго-запад под углом от 40 до 60 градусов. При монтаже нужно учитывать внешние факторы. Панели не должны загораживаться деревьями и другими предметами, на них не должна попадать грязь.

Несколько рекомендаций, которые помогут сберечь деньги и время при изготовлении солнечных панелей:

  1. Лучше покупать фотоэлементы с небольшими дефектами. Они также работоспособны, только имеют не такой красивый внешний вид. Новые элементы очень дороги, сборка солнечной батареи будет экономически не оправдана. Если нет особой спешки, пластины лучше заказать на eBay, это обойдется еще дешевле. С пересылкой и Китая нужно быть осторожнее – большая вероятность получить бракованные детали.
  2. Фотоэлементы нужно купить с небольшим запасом, велика вероятность их поломки во время монтажа, особенно, если нет опыта сборки подобных конструкций.
  3. Если элементы пока не используются, следует припрятать их в надежное место во избежание поломок хрупких деталей. Нельзя складывать пластины большими стопками – они могут лопнуть.
  4. При первой сборке следует изготовить шаблон, на котором будут размечены места расположения пластин перед сборкой. Так легче вымерять расстояния между элементами перед пайкой.
  5. Паять необходимо маломощным паяльником, и ни в коем случае не применять усилие при пайке.
  6. Для сборки корпуса удобнее применять алюминиевые уголки, деревянная конструкция менее надежная. В качестве листа с тыльной стороны элементов лучше использовать оргстекло или другой подобный материал и надежнее, чем крашеная фанера, и эстетично выглядит.
  7. Располагать фотоэлектрические панели следует в местах, где солнечное освещение будет максимальным в течение всего светового дня.

Схема электроснабжения дома

Последовательная цепь энергоснабжения частного дома на солнечных батареях выглядит следующим образом:

  1. Солнечная батарея из нескольких панелей, которые расположены на скате крыши дома, либо на кронштейне. В зависимости от энергопотребления, панелей может быть до 20 штук и больше. Батарея вырабатывает постоянный ток 12 вольт.
  2. Контроллер зарядки. Устройство предохраняет аккумуляторы от преждевременного разряда, а также ограничивает напряжение в цепи постоянного тока. Тем самым, контроллер защищает аккумуляторы от перегрузки.
  3. Инвертор напряжения. Преобразует постоянный ток в переменный ток, обеспечивая тем самым возможность потребления электроэнергии бытовыми приборами.
  4. Аккумуляторы. Для частных домов и дач ставят несколько аккумуляторов, соединяя их последовательно. Служат для накопления энергии. Энергия аккумуляторов используется в темное время суток, когда элементы солнечной батареи не вырабатывают ток.
  5. Электросчетчик.

Довольно часто в частных домах система энергоснабжения дополняется резервным генератором.

В целом, собрать солнечную батарею своими руками не так уж и сложно. Необходимы только определенные средства, терпение и аккуратность.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Foundation-Stroy.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: